DISCRETE SERIES CHARACTERS AND TWO-STRUCTURES

REBECCA A. HERB

ABSTRACT. Let G be a connected semisimple real Lie group with compact Cartan subgroup. Harish-Chandra gave formulas for discrete series characters which are completely explicit except for certain interger constants appearing in the numerators. The main result of this paper is a new formula for these constants using two-structures. The new formula avoids endoscopy and stable discrete series entirely, expressing (unaveraged) discrete series constants directly in terms of (unaveraged) discrete series constants corresponding to two-structures of noncompact type.

1. Introduction

Let G be a connected semisimple real Lie group with finite center. Associated to each irreducible unitary representation π of G is its distributional character Θ_{π} . These characters are actually analytic functions on the regular set of G, and it is a fundamental problem of harmonic analysis to find formulas for these characters as functions on the regular set. For the important class of tempered representations these character formulas are well understood. The fundamental representations in this case are the irreducible discrete series (and limit of discrete series) representations. All other irreducible tempered representations can be obtained from these representations via unitary parabolic induction [K-Z]. Since character formulas for parabolically induced representations are known, given the formula for the inducing representation, the basic objects of study are the characters of discrete series representations.

Harish-Chandra gave formulas for discrete series characters in [HC1]. These formulas are completely explicit except for certain integer constants appearing in the numerators. The main result of this paper is a new formula for these constants. This formula uses the notion of a two-structure introduced in [H3] to give a formula for the analogous constants appearing in formulas for averaged discrete series characters. A more complicated formula for the (unaveraged) discrete series constants was given in [H4]. There the idea of endoscopy was used to write formulas for discrete series constants in terms of averaged constants for endoscopic groups. The new formula avoids endoscopy entirely, expressing discrete series constants directly in terms of (unaveraged) discrete series constants corresponding to two-structures of noncompact type. It could be used to greatly simplify the proof of the Fourier inversion formulas for orbital integrals in [H4]. It is not clear how two-structures

Received by the editors April 8, 1996 and, in revised form, October 4, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 22E30, 22E45.

Supported by NSF Grant DMS 9400797 and a University of Maryland GRB Semester Research Grant.

are related to the more geometric formulas for discrete series and averaged discrete series constants in [G-K-M].

In its simplest form the result can be stated as follows. Let Φ be a root system in a real vector space E. We assume that Φ contains a root system Φ_K , called the compact roots, and that Φ is spanned by a set of strongly orthogonal noncompact roots. Then we have a discrete series constant $d(E^*:\Phi^+)$ for each choice Φ^+ of positive roots and each connected component E^* of

$$E' = \{ \tau \in E : \langle \tau, \alpha \rangle \neq 0 \ \forall \ \alpha \in \Phi \}.$$

In [H3] we defined a set $\mathcal{T}(\Phi)$ of two-structures for Φ , and associated to each $\phi \in \mathcal{T}(\Phi)$ and choice Φ^+ of positive roots a sign $\epsilon(\phi : \Phi^+) = \pm 1$. Each $\phi \in \mathcal{T}(\Phi)$ is a root system contained in Φ , has the same rank as Φ , and has all irreducible factors of type A_1 or $B_2 \simeq C_2$. Let $\phi_K = \phi \cap \Phi_K$. We say a two-structure is of noncompact type if it is spanned by a strongly orthogonal set of noncompact roots, and write $\mathcal{T}_n(\Phi)$ for the set of all two-structures of noncompact type. Let Φ^+ be a choice of positive roots for Φ and let E^* be a connected component of E'. Then for each $\phi \in \mathcal{T}_n(\Phi)$, $\phi^+ = \phi \cap \Phi^+$ gives a choice of positive roots for ϕ , and there is a unique connected component E_{ϕ}^* of

$$E'(\phi) = \{ \tau \in E : \langle \tau, \alpha \rangle \neq 0 \ \forall \ \alpha \in \phi \}$$

which contains E^* . This data parameterizes a discrete series constant $d(E_{\phi}^*:\phi^+)$. Since every irreducible factor of ϕ is of type A_1 or B_2 , $d(E_{\phi}^*:\phi^+)$ is a product of discrete series constants corresponding to root systems of type A_1 or B_2 . These constants are easy to compute. (See for example [K, p. 498].) Define $c(\Phi) = [L(\phi):L(\Phi)]$, the index of the weight lattice of Φ in the weight lattice of Φ . It is independent of Φ in the weight value of Φ . It is independent of Φ . The main result of this paper is the following theorem, which will be stated in a more detailed form as Theorem 3.4 below.

Theorem. Let Φ^+ be a choice of positive roots for Φ and let E^* be a connected component of E'. Then

$$d(E^*:\Phi^+) = c(\Phi) \sum_{\phi \in \mathcal{T}_n(\phi)} \epsilon(\phi:\Phi^+) d(E_\phi^*:\phi^+).$$

The theorem is proven by showing that the right hand side of the equation has the usual properties which can be used to characterize discrete series constants. The only one of these which is difficult to verify is the patching condition.

2. Discrete Series Character Formulas

Let G be a connected semisimple Lie group with a compact Cartan subgroup B. For any closed subgroup H of G, we denote the real Lie algebra of H by the corresponding lower case German letter $\mathfrak h$ and the complexification of $\mathfrak h$ by $\mathfrak h_{\mathbf C}$. Let K be a maximal compact subgroup of G containing B and let $\mathfrak g = \mathfrak k + \mathfrak p$ be the corresponding Cartan decomposition.

Let $\Phi_G = \Phi(\mathfrak{g}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$ denote the roots of $\mathfrak{b}_{\mathbf{C}}$ in $\mathfrak{g}_{\mathbf{C}}$, and let $\Phi_K = \Phi(\mathfrak{k}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$ denote the set of compact roots. For any root system $\Phi \subset \Phi_G$, we will let $W(\Phi)$ denote the Weyl group generated by reflections in roots of Φ . Since G is connected, $W_G = N_G(B)/B$ can be identified with $W(\Phi_K)$.

Let $E = i\mathfrak{b}^*$ denote the real vector space of all complex linear functionals on $\mathfrak{b}_{\mathbf{C}}$ which take pure imaginary values on \mathfrak{b} . The $\Phi_G \subset E$ and we define

$$E' = \{ \tau \in E : \langle \tau, \alpha \rangle \neq 0 \ \forall \ \alpha \in \Phi_G \}.$$

For any root system $\Phi \subset \Phi_G$, we also define

$$E'(\Phi) = \{ \tau \in E : \langle \tau, \alpha \rangle \neq 0 \ \forall \ \alpha \in \Phi \}.$$

Fix a choice of positive roots Φ_G^+ and let ρ be half the sum of the roots in Φ_G^+ . Then $\lambda \in E'$ is called a discrete series parameter for G if $e^{\lambda - \rho}$ gives a well-defined character of B.

Fix a discrete series parameter $\lambda \in E'$. Write

$$\Delta_B(b)' = \prod_{\alpha \in \Phi_G^+} (1 - e^{-\alpha}(b)), \quad b \in B,$$

and define

$$q = \frac{1}{2} \dim G/K, \quad \epsilon(\lambda) = \operatorname{sign} \prod_{\alpha \in \Phi_G^+} \langle \alpha, \lambda \rangle.$$

Then, by [HC2, §27] there is a unique discrete series representation of G with character $\epsilon(\lambda)$ $(-1)^q\Theta_{\lambda}$, where Θ_{λ} is given on regular elements $b \in B$ by

(2.1)
$$\Delta_B(b)' \Theta_{\lambda}(b) = \sum_{w \in W_G} \det w \ e^{w\lambda - \rho}(b).$$

To describe the formula for Θ_{λ} on noncompact Cartan subgroups, we follow the notation of Harish-Chandra in [HC1, §22]. Thus we let A denote a θ -stable Cartan subgroup of G with $A = A_I A_R$, $A_I = A \cap K$, $\mathfrak{a}_R \subset \mathfrak{p}$. Fix a connected component A^+ of

$$A'(R) = \{ h \in A : e^{\alpha}(h) \neq 1 \ \forall \ \alpha \in \Phi_R(\mathfrak{g}_{\mathbf{C}}, \mathfrak{a}_{\mathbf{C}}) \},$$

where $\Phi_R(\mathfrak{g}_{\mathbf{C}},\mathfrak{a}_{\mathbf{C}})$ denotes the set of roots of $\mathfrak{a}_{\mathbf{C}}$ in $\mathfrak{g}_{\mathbf{C}}$ which take real values on \mathfrak{a} . Then $A^+ = A_I^+ A_R^+$, where A_I^+ is a connected component of A_I and $A_R^+ \subset A_R$. We can assume (by conjugating if necessary) that $A_I^+ \subset B$. Let \mathfrak{z} be the centralizer of A_I^+ in \mathfrak{g} , and let Ξ be the analytic subgroup of G corresponding to \mathfrak{z} . Then \mathfrak{b} and \mathfrak{a} are both Cartan subalgebras of \mathfrak{z} . Fix a Cayley transform $y \in Ad(\mathfrak{z}_{\mathbf{C}})$ such that $y(\mathfrak{b}_{\mathbf{C}}) = \mathfrak{a}_{\mathbf{C}}$. Then $y\Phi_G^+$ gives a choice of positive roots for $\Phi(\mathfrak{g}_{\mathbf{C}},\mathfrak{a}_{\mathbf{C}})$. For $h \in A$, define

$$\Delta_A(h)' = \prod_{\alpha \in y\Phi_G^+} (1 - e^{-\alpha}(h)).$$

If G is acceptable we can also define

$$\Delta_A(h) = e^{y\rho}(h)\Delta_A(h)'.$$

Write $\Phi = \Phi(\mathfrak{z}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$. Since \mathfrak{z} has a Cartan subalgebra \mathfrak{a} which is split modulo the center of \mathfrak{z} , the root system Φ is spanned by a strongly orthogonal collection of noncompact roots. Further, $y\Phi \subset \Phi_R(\mathfrak{g}_{\mathbf{C}}, \mathfrak{a}_{\mathbf{C}})$. Let $W(A^+) = W(y\Phi), W(A_I^+) = W_G \cap W(\Phi)$, and $W_{\Xi} = N_{\Xi}(B)/B$. Note that W_{Ξ} is a subgroup of $W(A_I^+)$.

Assume that G is acceptable. Then by [HC1, Lemma 59], for each $s \in W(A^+)$ and connected component E^* of E' there is a unique constant $c_{HC}(s:E^*:A^+)$, such that for all $h_1 \in A_L^+, h_2 \in A_R^+$,

$$\Delta_A(h_1 h_2) \Theta_{\lambda}(h_1 h_2) = \sum_{t \in W(A_I^+) \setminus W_G} \det t \ e^{t\lambda}(h_1)$$

(2.2)
$$\times \sum_{s \in W(A^+)} \det s \ c_{HC}(s: tE^*(\lambda): A^+) \exp(s(t\lambda)^y \log h_2).$$

Here $E^*(\lambda)$ is the connected component of E' containing λ .

For any $s \in W(A^+)$ and connected component E^* of E', by [HC1, Lemma 58] we have

(2.3)
$$c_{HC}(s:E^*:A^+) = \sum_{t \in W(A_I^+)/W_{\Xi}} c_{\mathfrak{z}}(st^y:t^{-1}E^*:\mathfrak{a}^+)$$

where $\mathfrak{a}^+ = \mathfrak{a}_I + \mathfrak{a}_R^+$, and the constants $c_{\mathfrak{z}}(s:E^*:\mathfrak{a}^+)$ come from the theory of the Lie algebra [HC1, Lemma 40]. Using the definition following [HC1, Lemma 40], we see that $c_{\mathfrak{z}}(s:E^*:\mathfrak{a}^+)$ depends only on the connected component $E_{\mathfrak{z}}^*$ of $E'(\Phi)$ containing E^* . Formula (2.3) shows that the constants $c_{HC}(s:E^*:A^+)$ depend only on the local isomorphism class of G, and are given by a simple formula in terms of constants which depend only on data corresponding to \mathfrak{z} , not on the original group G.

As in the proof of Lemma 59 in the middle of page 304 of [HC1], we can rewrite equation (2.2) in terms of these local constants as

$$\Delta_A(h_1h_2) \ \Theta_\lambda(h_1h_2) = \sum_{t \in W_\Xi \setminus W_G} \det t \ e^{t\lambda}(h_1)$$

(2.4)
$$\times \sum_{s \in W(A^+)} \det s \ c_{\mathfrak{z}}(s: tE^*(\lambda): \mathfrak{a}^+) \exp(s(t\lambda)^y \log h_2).$$

Note that $W(A^+) = W(y\Phi) = \{w^y : w \in W(\Phi)\}$. Further, if we define $\Phi(\mathfrak{a}^+) = \{\alpha \in \Phi : y\alpha(H) > 0 \ \forall \ H \in \mathfrak{a}^+\}.$

then $\Phi(\mathfrak{a}^+)$ is a choice of positive roots for Φ , and \mathfrak{a}^+ is the positive Weyl chamber of \mathfrak{a} with respect to $y\Phi(\mathfrak{a}^+)$. We change notation slightly and write

$$c(w: E^*: \Phi(\mathfrak{a}^+)) = c_{\mathfrak{z}}(w^y: E^*: \mathfrak{a}^+).$$

Then we can rewrite equation (2.4) as

$$\Delta_A(h_1 h_2) \Theta_{\lambda}(h_1 h_2) = \sum_{t \in W = \backslash W_G} \det t \ e^{t\lambda}(h_1)$$

(2.5)
$$\times \sum_{w \in W(\Phi)} \det w \ c(w : tE^*(\lambda) : \Phi(\mathfrak{a}^+)) \exp((wt\lambda)^y \log h_2).$$

Since the Cayley transform y centralizes A_I^+ ,

$$\Delta_A(h_1 h_2) = e^{y\rho}(h_1 h_2) \Delta_A(h_1 h_2)' = e^{\rho}(h_1) e^{y\rho(\log h_2)} \Delta_A(h_1 h_2)'.$$

Thus we can rewrite formula (2.5) as

$$\Delta_A(h_1h_2)' \Theta_\lambda(h_1h_2) = \sum_{t \in W_\Xi \setminus W_G} \det t \ e^{t\lambda - \rho}(h_1)$$

(2.6)
$$\times \sum_{w \in W(\Phi)} \det w \ c(w : tE^*(\lambda) : \Phi(\mathfrak{a}^+)) \exp((wt\lambda - \rho)^y \log h_2).$$

Now suppose that G is not acceptable and λ is a discrete series parameter for G. As in [HC2, §27], G has a two-fold acceptable cover G_1 , and λ is also a discrete series parameter for G_1 with character formula (2.6). But since both sides of equation (2.6) are well-defined on G, the formula is also valid for the discrete series character formula on G.

Remark. The assumption that G has finite center is not really necessary. Using the techniques in [H-W], formula (2.6) can also be used in the case that G has infinite center and B is compact modulo the center of G. In this case the representations are not true discrete series, but rather "relative discrete series".

We want to study the properties of the discrete series constants, and show that they are completely characterized by these properties. Since the constants $c(w:E^*:\Phi^+)$ depend only on data involving the Lie algebra \mathfrak{z} , we may as well assume that G is acceptable and that $G=\Xi$, so that A_I^+ is central in G. Now since the discrete series character transforms by the central character along its center, we may as well assume that $A_I^+=A_I^0=\{1\}$. That is, we assume that G is a connected split semisimple Lie group and A is a split Cartan subgroup. We may as well also assume that $G \subset G_{\mathbf{C}}$, where $G_{\mathbf{C}}$ is a simply connected complexification of G.

Under these assumptions, let Φ^+ be any choice of positive roots for Φ and E^* any connected component of $E' = E'(\Phi)$. Then for any discrete series parameter $\lambda \in E^*$ and any $a \in A^+ = \{a \in A^0 : y\alpha(\log a) > 0 \ \forall \ \alpha \in \Phi^+\}$, we have

(2.7)
$$\Delta_A(a) \Theta_{\lambda}(a) = \sum_{w \in W(\Phi)} \det w \ c(w : E^* : \Phi^+) \exp((w\lambda)^y \log a).$$

We first show that the constants do not depend on the choice A of split Cartan subgroup or the Cayley transform.

Lemma 2.1. Let \mathfrak{h} be any split Cartan subalgebra of \mathfrak{g} and let c be any Cayley transform in $Ad(\mathfrak{g}_{\mathbf{C}})$ such that $c(\mathfrak{b}_{\mathbf{C}}) = \mathfrak{h}_{\mathbf{C}}$. Define Δ_H as above using $c\Phi^+$. Let $h \in H^+ = \{h \in H^0 : c\alpha(\log h) > 0 \ \forall \ \alpha \in \Phi^+\}$. Then

$$\Delta_H(h) \ \Theta_{\lambda}(h) = \sum_{w \in W(\Phi)} \det w \ c(w : E^* : \Phi^+) \exp((w\lambda)^c \log h).$$

Proof. Since \mathfrak{h} and \mathfrak{a} are both split Cartan subalgebras of \mathfrak{g} , there is $k \in K$ such that $kAk^{-1} = H$. Let $c_1 = Adk \circ y : \mathfrak{h}_{\mathbf{C}} \to \mathfrak{h}_{\mathbf{C}}$. Then $cc_1^{-1}(\mathfrak{h}_{\mathbf{C}}) = \mathfrak{h}_{\mathbf{C}}$, and so represents an element of $W(\mathfrak{g}_{\mathbf{C}}, \mathfrak{h}_{\mathbf{C}})$. But since \mathfrak{h} is split, there is $k' \in N_K(H)$ such that cc_1^{-1} acts on $\mathfrak{h}_{\mathbf{C}}$ as Adk'. Thus $c = Adk' \circ c_1 = Ad(k'k) \circ y$ as a mapping from $\mathfrak{b}_{\mathbf{C}}$ to $\mathfrak{h}_{\mathbf{C}}$, and $k'kA(k'k)^{-1} = k'H(k')^{-1} = H$. Thus we can assume that k is chosen so that $c = Adk \circ y$ as a mapping from $\mathfrak{b}_{\mathbf{C}}$ to $\mathfrak{h}_{\mathbf{C}}$. Then

$$kA^+k^{-1} = \{h \in H^0 : y\alpha(Adk^{-1}\log h) > 0 \ \forall \ \alpha \in \Phi^+\} = H^+.$$

Fix $h \in H^+$ and let $a = k^{-1}hk \in A^+$. Then

$$\Delta_H(h) = e^{c\rho}(h) \prod_{\alpha \in c\Phi^+} (1 - e^{-\alpha}(h)) = e^{y\rho}(Ad(k^{-1})h) \prod_{\alpha \in y\Phi^+} (1 - e^{-\alpha}(Ad(k^{-1})h))$$

$$= e^{y\rho}(a) \prod_{\alpha \in y\Phi^+} (1 - e^{-\alpha}(a)) = \Delta_A(a).$$

Now since $\Theta_{\lambda}(h) = \Theta_{\lambda}(a)$,

$$\Delta_H(h) \Theta_{\lambda}(h) = \Delta_A(a)\Theta_{\lambda}(a) = \sum_{w \in W(\Phi)} \det w \ c(w : E^* : \Phi^+) \exp((w\lambda)^y \log a).$$

But $y^{-1} \log a = y^{-1} A dk^{-1} \log h = c^{-1} \log h$. Thus

$$\exp((w\lambda)^y \log a) = \exp((w\lambda)^c \log h).$$

Lemma 2.2. Let $u \in W(\Phi)$. Then for all choices of $w \in W(\Phi)$, E^* , and Φ^+ , $c(uw : E^* : u\Phi^+) = c(w : E^* : \Phi^+)$.

Proof. Let λ be a discrete series parameter in E^* and let \mathfrak{a}^+ be the positive Weyl chamber for $y\Phi^+$. Then for all $a \in A^+$,

$$\Delta_A(a) \Theta_\lambda(a) = \sum_{w \in W(\Phi)} \det w \ c(w : E^* : \Phi^+) \exp((w\lambda)^y \log a).$$

Since \mathfrak{a} is split, every element of $W(\Phi)^y = W(y\Phi)$ is induced on \mathfrak{a} by an element of G. Thus there is $x \in G$ such that $xax^{-1} = \exp(u^y \log a)$. Now $xax^{-1} \in \exp(u^y \mathfrak{a}^+)$, and $\Phi(u^y \mathfrak{a}^+) = u\Phi(\mathfrak{a}^+) = u\Phi^+$. Thus

$$\Delta_A(xax^{-1}) \Theta_\lambda(xax^{-1})$$

$$= \sum_{w \in W(\Phi)} \det w \ c(w : E^* : u\Phi^+) \exp((w\lambda)^y (u^y \log a)).$$

Using the change of variables, $w \mapsto uw$, we have

$$\Delta_A(xax^{-1}) \Theta_\lambda(xax^{-1})$$

$$= \sum_{w \in W(\Phi)} \det u \det w \ c(uw : E^* : u\Phi^+) \exp((uw\lambda)^y (u^y \log a))$$

$$= \det u \sum_{w \in W(\Phi)} \det w \ c(uw : E^* : u\Phi^+) \exp((w\lambda)^y \log a).$$

But $\Theta_{\lambda}(xax^{-1}) = \Theta_{\lambda}(a)$ and

$$\Delta_A(xax^{-1}) = \det u\Delta_A(a).$$

Thus we have

$$\sum_{w \in W(\Phi)} \det w \ c(w : E^* : \Phi^+) \exp((w\lambda)^y \log a)$$

$$= \sum_{w \in W(\Phi)} \det w \ c(uw : E^* : u\Phi^+) \exp((w\lambda)^y \log a).$$

Since the exponential terms are linearly independent, we must have

$$c(uw : E^* : u\Phi^+) = c(w : E^* : \Phi^+)$$

for all
$$w \in W(\Phi)$$
.

Remark. Lemma 2.2 is probably a consequence of [HC1, Corollary to Lemma 33]. However it is easier to reprove it than to track down all the notation.

Lemma 2.3. Let $t \in W(\Phi_K)$, where Φ_K denotes the set of compact roots in Φ . Then for all choices of $w \in W(\Phi), E^*$, and Φ^+ ,

$$c(wt:t^{-1}E^*:\Phi^+)=c(w:E^*:\Phi^+).$$

Proof. Under the assumption that $G = \Xi$ we have $W(A_I^+) = W(\Phi_K)$ and

$$c(w: E^*: \Phi(\mathfrak{a}^+)) = c_{HC}(w^y: E^*: A^+).$$

Thus the lemma follows from the equation

$$c_{HC}(su^y: u^{-1}E^*: A^+) = c_{HC}(s: E^*: A^+), u \in W(A_I^+),$$

following Lemma 58 of [HC1].

Lemma 2.4. Suppose that there is $\tau \in E^*$ such that $\langle w\tau, \alpha \rangle > 0$ for all $\alpha \in \Phi^+$. Then $c(w : E^* : \Phi^+) = 0$.

Proof. Let \mathfrak{a}^+ be the positive Weyl chamber for $y\Phi^+$. For each $\alpha\in\Phi$, let $H_{y\alpha}\in\mathfrak{a}$ correspond to $y\alpha$ by the usual Killing form identification of \mathfrak{a} and \mathfrak{a}^* . Then $H=\sum_{\alpha\in\Phi^+}H_{y\alpha}\in\mathfrak{a}^+$ and $\langle (w\tau)^y,H\rangle=\langle \tau^y,(w^y)^{-1}H\rangle>0$. Now by [HC1, Lemma 60], $c_{HC}(w^y:E^*:A^+)=0$. As in the proof of Lemma 2.3,

$$c_{HC}(w^y : E^* : A^+) = c(w : E^* : \Phi^+).$$

Remark. Since E^* is a connected component of $E'(\Phi)$, the condition of Lemma 2.4 holds for some $\tau \in E^*$ if and only if it hold for all $\tau \in E^*$. Further, Lemma 2.4 is much weaker than [HC1, Lemma 60]. However, for the induction, we only need to know that the constants are zero in one chamber.

In order to completely characterize the constants $c(w: E^*: \Phi^+)$ we will need a patching condition. As above we assume that G is split and $A^+ \subset A^0$, where \mathfrak{a} is a split Cartan subalgebra. Fix $\alpha \in \Phi$ and let

$$\Phi_{\alpha} = \{ \beta \in \Phi : \langle \beta, \alpha \rangle = 0 \}.$$

We will say that α is a good root of Φ if Φ_{α} is spanned by strongly orthogonal noncompact roots.

Lemma 2.5. Let $\alpha \in \Phi$. Then α is a good root of Φ if and only if there is a θ -stable Cartan subgroup $H = H_I H_R$ of G with $H_I^0 \subset B$ and $\Phi_\alpha = \Phi(\mathfrak{z}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$, where \mathfrak{z} is the centralizer in \mathfrak{g} of H_I^0 .

Proof. Suppose that such a Cartan subgroup H exists. Then Φ_{α} is the root system of a Lie algebra \mathfrak{z} (with respect to compact Cartan subalgebra \mathfrak{b}) which has a Cartan subalgebra \mathfrak{h} which is split modulo the center of \mathfrak{z} . Thus Φ_{α} is spanned by strongly orthogonal noncompact roots.

Conversely, suppose that Φ_{α} is spanned by the set S of strongly orthogonal noncompact roots. Let $c_S = \prod_{\beta \in S} c_{\beta}$, where c_{β} denotes the Cayley transform in β . Then $c_S(\mathfrak{b}_{\mathbf{C}}) = \mathfrak{h}_{\mathbf{C}}$, where $\mathfrak{h} = \mathfrak{h}_I + \mathfrak{h}_R$ is a Cartan subalgebra of \mathfrak{g} with

$$\mathfrak{h}_I = \mathfrak{h} \cap \mathfrak{k} = \{ H \in \mathfrak{b} : \beta(H) = 0 \ \forall \ \beta \in S \} = \mathbf{R}iH_{\alpha}$$

and

$$\mathfrak{h}_R = \mathfrak{h} \cap \mathfrak{p} = \sum_{\beta \in S} \mathbf{R} c_S(H_\beta),$$

where for all $\beta \in \Phi$, $H_{\beta} \in \mathfrak{b}_{\mathbf{C}}$ corresponds to β via the Killing form. Clearly $H_I^0 \subset B$ and $\Phi_{\alpha} = \Phi(\mathfrak{z}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$.

Suppose that α is a good root of Φ , and let H be the Cartan subgroup with $H_I^0 \subset B$ and $\Phi_{\alpha} = \Phi(\mathfrak{z}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$ given by Lemma 2.5. Let $y' \in Ad(\mathfrak{z}_{\mathbf{C}})$ be a Cayley transform with $y'\mathfrak{b}_{\mathbf{C}} = \mathfrak{h}_{\mathbf{C}}$. Let Φ^+ be a choice of positive roots for which α is simple, and let $\Phi_{\alpha}^+ = \Phi^+ \cap \Phi_{\alpha}$,

$$H_R^+ = \{ h_2 \in H_R : y'\beta(\log h_2) > 0 \ \forall \ \beta \in \Phi_\alpha^+ \}.$$

Then if Δ_H is defined using $y'\Phi^+$, for any $h_1 \in H_I^0, h_2 \in H_R^+$, by equation (2.6) we have

$$\Delta_H(h_1 h_2) \Theta_{\lambda}(h_1 h_2) = \sum_{t \in W_{\Xi} \setminus W_G} \det t \ e^{t\lambda}(h_1)$$

(2.8)
$$\times \sum_{v \in W(\Phi_{\alpha})} \det v \ c(v : tE^* : \Phi_{\alpha}^+) \exp((vt\lambda)^{y'} \log h_2).$$

Thus when α is a good root we have associated discrete series constants $c(v: E^*: \Phi_{\alpha}^+), v \in W(\Phi_{\alpha})$. In order to state the patching condition cleanly in our terminology, we will extend our definition. Let $w \in W(\Phi)$. Then we define $c(w: E^*: \Phi_{\alpha}^+) = 0$ unless $w = vt, v \in W(\Phi_{\alpha}), t \in W(\Phi_K)$. When $w = vt, v \in W(\Phi_{\alpha}), t \in W(\Phi_K)$, we define

$$c(w: E^*: \Phi_{\alpha}^+) = c(v: tE^*: \Phi_{\alpha}^+).$$

Lemma 2.6. Suppose that α is a good root of Φ and is simple for the ordering Φ^+ . Then for all $w \in W(\Phi)$,

$$c(w:E^*:\Phi^+) + c(s_{\alpha}w:E^*:\Phi^+) = c(w:E^*:\Phi^+_{\alpha}) + c(s_{\alpha}w:E^*:\Phi^+_{\alpha}).$$

Here s_{α} denotes the reflection corresponding to α .

Proof. Such a patching condition for constants on the Lie algebra appears in [HC1, Lemma 26]. However it will be easier to derive our patching condition from the treatment by Knapp in [K, 13.5].

As in the proof of Lemma 2.5, let S be a collection of strongly orthogonal noncompact roots spanning Φ_{α} , and define $\mathfrak{h}_{\mathbf{C}} = c_S(\mathfrak{b}_{\mathbf{C}})$. Then $c_S\Phi_{\alpha}$ is the set of real roots of \mathfrak{h} in \mathfrak{g} , and $\pm c_S\alpha$ are the only roots which take pure imaginary values on \mathfrak{h} . Since \mathfrak{g} is split, the root $c_S\alpha$ must be a noncompact imaginary root of \mathfrak{h} . (Otherwise \mathfrak{h} would be maximally split in \mathfrak{g} .) Let c_1 be the Cayley transform in $c_S\alpha$. Then there is a split Cartan subalgebra \mathfrak{a}' of \mathfrak{g} so that $\mathfrak{a}_{\mathbf{C}}' = c_1\mathfrak{h}_{\mathbf{C}} = c\mathfrak{b}_{\mathbf{C}}$, where $c = c_1c_S$. By Lemma 2.1, the constants occurring in the character formula for \mathfrak{a}' are the same as those occurring in the character formula for $\mathfrak{a}.$ Thus we have the character formula

$$\Delta_{A'}(a') \Theta_{\lambda}(a') = \sum_{w \in W(\Phi)} \det w \ c(w : E^* : \Phi^+) \exp((w\lambda)^c \log a')$$

for $a' \in (A')^+ = \{ a' \in A' : c\alpha(\log a') > 0 \ \forall \ \alpha \in \Phi^+ \}.$

Compare this to [K, formula 13.30]. In [K, 13.30] Θ_{λ} denotes the actual discrete series character, so (13.30) contains the term $(-1)^q \epsilon(\lambda)$. It contains constants $c_K(w,\lambda,\Delta_L^+), w \in W(\Phi)$, where Δ_L^+ is the positive system in $\Phi(\mathfrak{g}_{\mathbf{C}},\mathfrak{a}_{\mathbf{C}}')$ determined by $(A')^+$. Thus in our notation, $\Delta_L^+ = c\Phi^+$. Thus for all $w \in W(\Phi)$ we have

$$c(w : E^* : \Phi^+) = c_K(w, \lambda, c\Phi^+).$$

Now let $\alpha' = c\alpha$. It is a simple root for $\Delta_L^+ = c\Phi^+$. Knapp defines

$$\Delta_{L,\alpha'}^+ = \{ \beta \in \Delta_L^+ : \langle \beta, \alpha' \rangle = 0 \}.$$

Thus $\Delta_{L,\alpha'}^+ = c\Phi_{\alpha}^+$, and the Cayley transform $d_{\alpha'}$ used in [K] is just c_1^{-1} . Thus $d_{\alpha'}(\mathfrak{a}_{\mathbf{C}}') = \mathfrak{h}_{\mathbf{C}}$, and the Cayley transform $c^* : \mathfrak{b}_{\mathbf{C}} \to \mathfrak{h}_{\mathbf{C}}$ is $c^* = c_1^{-1}c = c_S$. Now $H_I^0 \subset B$ is the connected component of H_I containing $(A')_I^0 = \{1\}$. As above, the constants $c(v : E^* : \Phi_{\alpha}^+), v \in W(\Phi_{\alpha})$, are the constants occurring in the character formula

$$\Delta_H(h_1 h_2) \Theta_{\lambda}(h_1 h_2) = \sum_{t \in W_{\Xi} \setminus W_G} \det t \ e^{t\lambda}(h_1)$$

$$\times \sum_{v \in W(\Phi_{\alpha})} \det v \ c(v : tE^* : \Phi_{\alpha}^+) \exp((vt\lambda)^{c^*} \log h_2)).$$

Note that $W(H_I^0) = W_G \cap W(\Phi_\alpha)$ is the set of all elements in W_G which fix α . Now since $W_G = W(\Phi_K)$ is generated by reflections in the compact roots, $W_G \cap W(\Phi_\alpha)$ is generated by reflections in compact roots which are orthogonal to α . Thus $W(H_I^0) = W_\Xi = W(\Phi_{\alpha,K})$, where $\Phi_{\alpha,K} = \Phi_K \cap \Phi_\alpha$. Thus the exponential terms occurring on the right hand side of the above equation are linearly independent.

The comparable formula from [K, 13.30] is

$$\Delta_H(h_1h_2)\Theta_{\lambda}(h_1h_2) = \sum_{w \in W(\Phi)} \det w \ c_K(w,\lambda,\Delta_{L,\alpha'}^+) e^{w\lambda}(h_1) \exp((w\lambda)^{c^*} \log h_2).$$

Comparing the coefficients of the different exponential terms, we see that $c_K(w, \lambda, \Delta_{L,\alpha'}^+) = 0$ unless there are $t \in W(\Phi_K), v \in W(\Phi_\alpha)$ such that w = vt. If w = vt then

$$c_K(w, \lambda, \Delta_{L,\alpha'}^+) = c(v : tE^* : \Phi_{\alpha}^+).$$

Thus for all $w \in W(\Phi)$, using the extension of our constants to $W(\Phi)$, we have

$$c_K(w, \lambda, \Delta_{L,\alpha'}^+) = c(w : E^* : \Phi_{\alpha}^+).$$

The patching condition in [K, formula 13.34] is

$$c(w,\lambda,\Delta_L^+) + c(s_{\alpha}w,\lambda,\Delta_L^+) = c(w,\lambda,\Delta_{L,\alpha'}^+) + c(s_{\alpha}w,\lambda,\Delta_{L,\alpha'}^+), \quad w \in W(\Phi).$$

In our notation the patching condition becomes

$$c(w:E^*:\Phi^+) + c(s_{\alpha}w:E^*:\Phi^+) = c(w:E^*:\Phi^+_{\alpha}) + c(s_{\alpha}w:E^*:\Phi^+_{\alpha}).$$

The patching condition relates the constants for Φ to those of the lower rank root system Φ_{α} . We also need an initial condition. This comes from the discrete series character formula on the compact Cartan subgroup B, and corresponds to the case that $\Phi = \emptyset$. Then $E'(\Phi) = E$ and $W(\Phi) = \{1\}$. It is consistent with our notation and equation (2.1) to define

$$(2.9) c(1:E:\emptyset) = c_{HC}(1:E:B) = 1.$$

3. Amplified Statement of the Main Theorem

Let Φ be a root system spanned by strongly orthogonal noncompact roots, and E a real vector space containing Φ . Then for every connected component E^* of $E'(\Phi)$, every positive system Φ^+ for Φ , and every $w \in W(\Phi)$, we have a constant $c(w:E^*:\Phi^+)$ coming from discrete series character formulas as in §2. By Lemmas 2.2, 2.3, 2.4, 2.6, and equation (2.9), these constants satisfy the following conditions. For all $u, w \in W, v \in W_K = W(\Phi_K)$,

(3.1)
$$c(uw : E^* : u\Phi^+) = c(w : E^* : \Phi^+);$$

(3.2)
$$c(wv:v^{-1}E^*:\Phi^+) = c(w:E^*:\Phi^+);$$

(3.3)
$$c(w: E^*: \Phi^+) = 0$$
 if there is $\tau \in E^*$ such that $\langle w\tau, \alpha \rangle > 0 \ \forall \ \alpha \in \Phi^+$;

$$(3.4) c(1:E:\emptyset) = 1;$$

Let α be a good root of Φ which is simple for Φ^+ . Then, using the notation of Lemma 2.6,

$$(3.5) c(w:E^*:\Phi^+) + c(s_{\alpha}w:E^*:\Phi^+) = c(w:E^*:\Phi^+_{\alpha}) + c(s_{\alpha}w:E^*:\Phi^+_{\alpha}).$$

Since Φ is spanned by orthogonal roots, every irreducible factor of Φ will be of type $A_1, B_n, C_n, D_{2n}, E_7, E_8, F_4$, or G_2 .

Definition. If Φ is irreducible of type $A_1, B_{2n+1}, D_{2n}, E_7, E_8$, or G_2 , we will say that Φ^+ is a good choice of positive roots if all simple roots are noncompact. If Φ is of type B_{2n}, C_n , or F_4 , we will say that Φ^+ is a good choice of positive roots if all long simple roots are noncompact and all short simple roots are compact.

Lemma 3.1. Let Φ be a root system spanned by strongly orthogonal noncompact roots. Then a good choice of positive roots exists. Further, if α is any simple root for a good choice of positive roots, then α is a good root.

It is enough to prove Lemma 3.1 in the case that Φ is irreducible. It is checked for each case in §5.

Lemma 3.2. Properties (3.1)-(3.5) determine the constants $c(w : E^* : \Phi^+)$ completely.

Proof. The constants are defined by (3.4) if rank $\Phi = 0$. Let Φ have rank n and assume inductively that the constants are completely defined for root systems of rank less than n. Let Φ_g^+ be a good choice of positive roots. Then any choice Φ^+ is of the form $\Phi^+ = u\Phi_g^+$ for some $u \in W$. Now for any $w \in W$, $E^* \subset E'$, using (3.1),

$$c(w: E^*: \Phi^+) = c(u^{-1}w: E^*: \Phi_q^+).$$

Thus it is enough to define the constants for Φ_g^+ . For Φ_g^+ we have patching conditions for every simple root, so as usual we can use (3.3), (3.5), and the induction hypothesis applied to the root systems Φ_α^+ to determine all the constants corresponding to Φ_g^+ .

Suppose Φ_1 and Φ_2 are two root systems as above in real vector spaces E_1 and E_2 with positive roots Φ_i^+ and compact roots $\Phi_{i,K}$, i=1,2. Let $\psi: E_1 \to E_2$ be an isomorphism such that

$$\psi(\Phi_1^+) = \Phi_2^+, \quad \psi(\Phi_{1,K}) = \Phi_{2,K}.$$

For each $E_1^* \subset E_1'$, we have $E_2^* = \psi(E_1^*) \subset E_2'$. Also, for any $w_1 \in W(\Phi_1)$, $w_2 = \psi w_1 \psi^{-1} \in W(\Phi_2)$. Now because ψ preserves all the structure used to characterize the constants, for all $w_1 \in W(\Phi_1)$, $E_1^* \subset E_1'$ we have

$$(3.6) c(w_2: E_2^*: \Phi_2^+) = c(\psi w_1 \psi^{-1}: \psi E_1^*: \psi \Phi_1^+) = c(w_1: E_1^*: \Phi_1^+).$$

Let Φ be a root system spanned by strongly orthogonal noncompact roots as above, and write $W=W(\Phi)$. Recall that a root system $\phi\subset\Phi$ is called a two-structure for Φ if:

- (i) all irreducible factors of ϕ are of type A_1 or $B_2 \simeq C_2$;
- (ii) for any choice ϕ^+ of positive roots for ϕ , $\{w \in W : w\phi^+ = \phi^+\}$ contains no elements of determinant -1. Property (ii) forces a two-structure ϕ to be as big as possible; in particular rank $\phi = \text{rank } \Phi$.

Let $\mathcal{T}(\Phi)$ denote the set of all two-structures of Φ and let Φ^+ be a choice of positive roots for Φ . For each $\phi \in \mathcal{T}(\Phi)$, let $\phi^+ = \phi \cap \Phi^+$. Define

$$W(\phi, \Phi^+) = \{ \sigma \in W : \sigma \phi^+ \subset \Phi^+ \}.$$

Then as in [H3] or [K, p. 501] we can associate to each $\phi \in \mathcal{T}(\Phi)$ a sign $\epsilon(\phi : \Phi^+) = \pm 1$. These signs have the property that for any $\phi \in \mathcal{T}(\Phi)$, $\sigma \in W(\phi, \Phi^+)$, $w \in W$,

(3.7)
$$\epsilon(\sigma\phi:\Phi^+) = \det\sigma\ \epsilon(\phi:\Phi^+);$$

(3.8)
$$\epsilon(w\phi: w\Phi^+) = \epsilon(\phi: \Phi^+).$$

They satisfy the following compatibility condition with patching. Let $\alpha \in \Phi$ and $\phi \in \mathcal{T}(\Phi)$. Then if $\alpha \in \phi$, we define $\phi_{\alpha} = \phi \cap \Phi_{\alpha}$.

Lemma 3.3. Let α be any root of Φ and let Φ^+ be a choice of positive roots for which α is simple. Suppose $\phi \in \mathcal{T}(\Phi)$ is such that $\alpha \in \phi$ and $\phi_{\alpha} \in \mathcal{T}(\Phi_{\alpha})$. Then

$$\epsilon(\phi:\Phi^+)=\epsilon(\phi_\alpha:\Phi_\alpha^+).$$

Lemma 3.3 was stated without proof in [H3]. A proof is given in $\S 5$.

Two structures were used in [H1], [H3] to obtain a formula for the constants occurring in averaged discrete series character formulas. For $E^* \subset E'$, define the averaged discrete series constant

$$\overline{c}(E^*:\Phi^+) = [W_K]^{-1} \sum_{w \in W} c(w:w^{-1}E^*:\Phi^+).$$

Averaged discrete series constants corresponding to $\phi \in \mathcal{T}(\Phi)$ can be defined as follows. Let $\phi \in \mathcal{T}(\Phi)$. All irreducible factors of ϕ are of type A_1 or $B_2 \simeq C_2$. By identifying irreducible factors of type A_1 with the root system of the Lie algebra of $SL(2, \mathbf{R})$ and irreducible factors of type $B_2 \simeq C_2$ with the root system of the Lie algebra of $Sp(2, \mathbf{R})$, we obtain a subset ϕ_K of compact roots. Every root occurring in an A_1 factor will be noncompact, and any long root occurring in a $B_2 \simeq C_2$ factor will be noncompact. In $B_2 \simeq C_2$ factors, one short root (and its negative) will be compact, the other will be noncompact. Which short root is compact will depend on the identification used. Fix a choice of ϕ_K as above. Then for any choice of positive roots $\phi^+, w \in W(\phi)$, and $E_{\phi}^* \subset E(\phi)'$ we have constants $c(w : E_{\phi}^* : \phi^+)$. Now let E^* be a connected component of $E' = E'(\Phi)$. There is a unique connected component E_{ϕ}^* of $E'(\phi)$ which contains it, and we write

$$c(w : E^* : \phi^+) = c(w : E^*_{\phi} : \phi^+).$$

Define

$$\overline{c}(E^*:\phi^+) = [W(\phi_K)]^{-1} \sum_{w \in W(\phi)} c(w:w^{-1}E^*:\phi^+).$$

Although the constants $c(w: E^*: \phi^+)$ depend on the identifications used to define ϕ_K , the averaged constants $\overline{c}(E^*: \phi^+)$ are independent of the identifications. It is proved in [H1], [H3] that

(3.9)
$$\overline{c}(E^*:\Phi^+) = \sum_{\phi \in \mathcal{T}(\Phi)} \epsilon(\phi:\Phi^+) \ \overline{c}(E^*:\phi^+),$$

where $\phi^+ = \phi \cap \Phi^+$ for all $\phi \in \mathcal{T}(\Phi)$.

We want to obtain a formula similar to (3.9) for the (unaveraged) constants $c(w:E^*:\Phi^+)$. We will say a two-structure for Φ is of noncompact type if ϕ is spanned by a collection of strongly orthogonal noncompact roots of Φ . This is equivalent to the condition that all long roots of ϕ are noncompact in Φ , where by a long root of ϕ we mean any root in an A_1 factor and any long root in a $B_2 \simeq C_2$ factor. Write $\mathcal{T}_n(\Phi)$ for the two-structures of noncompact type for Φ . Then for any $\phi \in \mathcal{T}_n(\Phi)$, $\phi_K = \phi \cap \Phi_K$ gives a canonical choice for compact roots in ϕ . For $\phi \in \mathcal{T}_n(\Phi)$, we will always assume that this choice is used in defining discrete series constants $c(w:E^*:\phi^+), w \in W(\phi), E^* \subset E'$.

To get a direct analogue of formula (3.9) for the unaveraged constants, we would like to express the constants $c(w : E^* : \Phi^+), w \in W$, in terms of $c(w : E^* : \phi^+), \phi \in \mathcal{T}_n(\Phi)$. However, $W = W(\Phi)$ is not a subset of $W(\phi)$. Thus $c(w : E^* : \phi^+)$ is not defined for arbitrary $w \in W$. We can get around this as follows. Recall from (3.1) that for any $w \in W$ and any choice of Φ^+ and E^* ,

$$c(w: E^*: \Phi^+) = c(1: E^*: w^{-1}\Phi^+).$$

Thus it is enough to have formulas for the constants

$$d(E^*: \Phi^+) = c(1: E^*: \Phi^+)$$

for any choice of Φ^+ and E^* . We also have constants $d(E^*:\phi^+)=c(1:E^*:\phi^+)$ for every $\phi\in\mathcal{T}_n(\Phi)$.

We will prove the following theorem in the next section. It contains a constant $c(\Phi)$ which does not occur in (3.9) and is defined as follows. For any $\phi \in \mathcal{T}(\Phi)$ let $L = L(\Phi) \subset L(\phi)$, where $L(\Phi), L(\phi)$ denote the weight lattices of Φ and ϕ respectively. Let $c(\Phi) = [L(\phi) : L(\Phi)]$. It is independent of the choice of ϕ , since

all $\phi \in \mathcal{T}(\Phi)$ are conjugate via $W = W(\Phi)$. Its values for Φ irreducible are given by the following table, which also gives the type of ϕ in each case.

Theorem 3.4. Let E^* be any connected component of E' and let Φ^+ be any choice of positive roots for Φ . For all $\phi \in \mathcal{T}_n(\Phi)$, let $\phi^+ = \phi \cap \Phi^+$. Then

$$d(E^*:\Phi^+) = c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi)} \epsilon(\phi:\Phi^+) \ d(E^*:\phi^+).$$

Equivalently, for any $w \in W(\Phi)$ and E^*, Φ^+ as above,

$$c(w: E^*: \Phi^+) = c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi)} \epsilon(\phi: w^{-1}\Phi^+) \ c(1: E^*: \phi \cap w^{-1}\Phi^+).$$

4. Proof of Theorem 3.4

Let Φ be a root system spanned by strongly orthogonal noncompact roots as in §3. For any choice of positive roots Φ^+ and $w \in W, E^* \subset E'$, define

$$s(w: E^*: \Phi^+) = c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi)} \epsilon(\phi: w^{-1}\Phi^+) c(1: E^*: \phi \cap w^{-1}\Phi^+).$$

In order to prove Theorem 3.4 we must show that $c(w: E^*: \Phi^+) = s(w: E^*: \Phi^+)$. We will do this by showing that the constants $s(w: E^*: \Phi^+)$ satisfy the conditions (3.1)-(3.5) characterizing the discrete series constants. Checking the first four of these is easy.

Lemma 4.1. The constants $s(w : E^* : \Phi^+)$ satisfy conditions (3.1)-(3.4).

Proof. Let $u \in W$. Then

$$s(uw:E^*:u\Phi^+)\\ = c(\Phi)\sum_{\phi\in\mathcal{T}_n(\Phi)}\epsilon(\phi:w^{-1}u^{-1}u\Phi^+)c(1:E^*:\phi\cap w^{-1}u^{-1}u\Phi^+) = s(w:E^*:\Phi^+).$$

Thus the constants $s(w : E^* : \Phi^+)$ satisfy (3.1).

Let $v \in W_K = W(\Phi_K)$. Then $\alpha \mapsto v^{-1}\alpha$ preserves compact and noncompact roots of Φ . Thus for any $\phi \in \mathcal{T}_n(\Phi)$, $v^{-1}\phi \in \mathcal{T}_n(\Phi)$ also. Define the mapping $\psi_v : E \to E$ by $\psi_v(\tau) = v^{-1}\tau$, $\tau \in E$. Then $\psi_v(\phi) = v^{-1}\phi$. Further,

$$\psi_v(\phi_K) = v^{-1}(\phi \cap \Phi_K) = v^{-1}\phi \cap \Phi_K = (v^{-1}\phi)_K.$$

Thus, using (3.6),

$$c(1:v^{-1}E^*:v^{-1}\phi\cap v^{-1}w^{-1}\Phi^+) = c(1:v^{-1}E^*:v^{-1}(\phi\cap w^{-1}\Phi^+))$$
$$= c(1:E^*:\phi\cap w^{-1}\Phi^+).$$

Now using the change of variables $\phi \mapsto v^{-1}\phi$ and (3.8), we have

$$s(wv:v^{-1}E^*:\Phi^+)$$

$$= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi)} \epsilon(\phi:v^{-1}w^{-1}\Phi^+)c(1:v^{-1}E^*:\phi \cap v^{-1}w^{-1}\Phi^+)$$

$$= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi)} \epsilon(v^{-1}\phi:v^{-1}w^{-1}\Phi^+)c(1:v^{-1}E^*:v^{-1}\phi \cap v^{-1}w^{-1}\Phi^+)$$

$$= s(w:E^*:\Phi^+).$$

Thus the constants $s(w : E^* : \Phi^+)$ satisfy (3.2).

Suppose that there is $\tau \in E^*$ such that $\langle w\tau, \alpha \rangle > 0$ for all $\alpha \in \Phi^+$. Then for any $\phi \in \mathcal{T}_n(\Phi)$, $\langle \tau, \beta \rangle > 0$ for all $\beta \in \phi \cap w^{-1}\Phi^+$, so that $c(1: E^*: \phi \cap w^{-1}\Phi^+) = 0$. Thus $s(w: E^*: \Phi^+) = 0$, and the constants satisfy (3.3).

Finally, when
$$\Phi = \emptyset$$
, we have $\mathcal{T}_n(\Phi) = \{\emptyset\}, c(\Phi) = 1, \epsilon(\emptyset : \emptyset) = 1$, and $c(1 : E : \emptyset) = 1$. Thus $s(1 : E : \emptyset) = 1$ and the constants satisfy (3.4).

It remains to show that the constants $s(w: E^*: \Phi^+)$ satisfy the patching condition (3.5). Thus for the remainder of this section we assume that Φ^+ is a good choice of positive roots and fix a simple root α for Φ^+ . If $w_1 \in W(\Phi_\alpha), w_2 \in W_K$, define

$$s(w_1w_2: E^*: \Phi_{\alpha}^+) = s(w_1: (w_2E^*)_{\alpha}: \Phi_{\alpha}^+).$$

Define $s(w: E^*: \Phi_{\alpha}^+) = 0$ if $w \notin W(\Phi_{\alpha})W_K$. We must show that

$$(4.1) s(w:E^*:\Phi^+) + s(s_{\alpha}w:E^*:\Phi^+) = s(w:E^*:\Phi^+_{\alpha}) + s(s_{\alpha}w:E^*:\Phi^+_{\alpha}).$$

We will first simplify the left hand side of equation (4.1). Define

$$\mathcal{T}_n(\Phi, w^{-1}\alpha) = \{ \phi \in \mathcal{T}_n(\Phi) : w^{-1}\alpha \in \phi \}.$$

Lemma 4.2.

$$s(w: E^*: \Phi^+) + s(s_{\alpha}w: E^*: \Phi^+)$$

$$= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi, w^{-1}\alpha)} \epsilon(\phi: w^{-1}\Phi^+) [c(1: E^*: \phi \cap w^{-1}\Phi^+) + c(1: E^*: \phi \cap w^{-1}s_{\alpha}\Phi^+)].$$

Proof. By definition we have

$$s(w: E^*: \Phi^+) + s(s_{\alpha}w: E^*: \Phi^+)$$

$$= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi)} [\epsilon(\phi: w^{-1}\Phi^+)c(1: E^*: \phi \cap w^{-1}\Phi^+)$$

$$+ \epsilon(\phi: w^{-1}s_{\alpha}\Phi^+)c(1: E^*: \phi \cap w^{-1}s_{\alpha}\Phi^+)].$$

By (3.8), $\epsilon(\phi: w^{-1}\Phi^+) = \epsilon(w\phi: \Phi^+)$ and $\epsilon(\phi: w^{-1}s_\alpha\Phi^+) = \epsilon(s_\alpha w\phi: \Phi^+)$.

Suppose first that $\phi \notin \mathcal{T}_n(\Phi, w^{-1}\alpha)$. Then $\alpha \notin w\phi$. Since α is simple for Φ^+ , this implies that

$$w\phi \cap s_{\alpha}\Phi^{+} = w\phi \cap \Phi^{+}.$$

Thus $s_{\alpha}(w\phi \cap \Phi^+) \subset \Phi^+$ and $s_{\alpha} \in W(w\phi, \Phi^+)$. Using (3.7),

$$\epsilon(s_{\alpha}w\phi:\Phi^+)=-\epsilon(w\phi:\Phi^+).$$

Further,

$$\phi \cap w^{-1} s_{\alpha} \Phi^{+} = w^{-1} (w \phi \cap s_{\alpha} \Phi^{+}) = w^{-1} (w \phi \cap \Phi^{+}) = \phi \cap w^{-1} \Phi^{+},$$

so that

$$c(1:E^*:\phi\cap w^{-1}s_{\alpha}\Phi^+)=c(1:E^*:\phi\cap w^{-1}\Phi^+).$$

Thus in this case

$$\epsilon(\phi: w^{-1}\Phi^+)c(1: E^*: \phi \cap w^{-1}\Phi^+)$$

+ $\epsilon(\phi: w^{-1}s_{\alpha}\Phi^+)c(1: E^*: \phi \cap w^{-1}s_{\alpha}\Phi^+) = 0.$

Now if $\phi \in \mathcal{T}_n(\Phi, w^{-1}\alpha)$, then $\alpha \in w\phi$, so that $s_\alpha w\phi = w\phi$ and

$$\epsilon(w\phi:\Phi^+)=\epsilon(s_{\alpha}w\phi:\Phi^+).$$

Let $\phi \in \mathcal{T}_n(\Phi)$. Recall that a root β of ϕ is called a long root of ϕ if it is in an irreducible factor of ϕ of type A_1 or is a long root in an irreducible factor of type $B_2 \simeq C_2$. It is called a short root of ϕ if it is a short root in an irreducible factor of type $B_2 \simeq C_2$.

Lemma 4.3. Let $\phi \in \mathcal{T}_n(\Phi)$ and let $\beta \in \phi$. Then β is a good root of ϕ unless β is a short root of ϕ and is noncompact. Let ϕ^+ be a choice of positive roots for ϕ for which β is simple. Then for all $E^* \subset E'$,

$$c(1:E^*:\phi^+) + c(s_\beta:E^*:\phi^+) = 0$$

if β is not a good root of ϕ . If β is a good root of ϕ , then

$$c(1:E^*:\phi^+) + c(s_\beta:E^*:\phi^+) = c(\beta,\phi)c(1:E^*:\phi_\beta^+),$$

where

$$c(\beta, \phi) = \begin{cases} 1, & \text{if } \beta \text{ is a long root of } \phi; \\ 2, & \text{if } \beta \text{ is short root of } \phi. \end{cases}$$

Proof. Write $\phi = \phi'' \cup \phi'$, where ϕ' is the irreducible factor of ϕ containing β .

If ϕ' is of type A_1 , then $\phi_{\beta} = \phi''$ is spanned by strongly orthogonal noncompact roots, so β is a good root of ϕ . By (3.5) we have

$$c(1:E^*:\phi^+) + c(s_\beta:E^*:\phi^+) = c(1:E^*:\phi_\beta^+) + c(s_\beta:E^*:\phi_\beta^+).$$

But $W(\phi_{\beta})W_K(\phi) = W(\phi'')$, since $W_K(\phi) \subset W(\phi'')$. Thus $s_{\beta} \notin W(\phi_{\beta})W_K(\phi)$, and so $c(s_{\beta}: E^*: \phi_{\beta}^+) = 0$.

Suppose that ϕ' is of type $B_2 \simeq C_2$. We will use the notation

$$\phi' = \{ \pm e_1 \pm e_2, \pm 2e_1, \pm 2e_2 \},\$$

where the short root $e_1 - e_2$ is compact and the roots $2e_1, 2e_2, e_1 + e_2$ are non-compact. Then $\phi_{e_1+e_2} = \phi'' \cup \{\pm(e_1-e_2)\}$ is not spanned by noncompact roots, so $e_1 + e_2$ is not a good root of ϕ . However $\phi_{e_1-e_2} = \phi'' \cup \{\pm(e_1+e_2)\}$ and $\phi_{2e_i} = \phi'' \cup \{\pm 2e_j\}$ for $i, j = 1, 2, i \neq j$, so that $e_1 - e_2, 2e_1$, and $2e_2$ are good roots of ϕ .

Let $\beta = e_1 + e_2$, and let ϕ^+ be a positive system for which β is simple. Let $u = s_{2e_2}$. Then $\alpha = u\beta = e_1 - e_2$ is a good root and is simple for the positive system $u\phi^+$. Now since $us_{\beta} = s_{\alpha}u$,

$$c(1:E^*:\phi^+) + c(s_\beta:E^*:\phi^+) = c(u:E^*:u\phi^+) + c(us_\beta:E^*:u\phi^+)$$
$$= c(u:E^*:u\phi^+) + c(s_\alpha u:E^*:u\phi^+)$$

$$= c(u: E^*: \phi_\alpha \cap u\phi^+) + c(s_\alpha u: E^*: \phi_\alpha \cap u\phi^+).$$

But $\phi_{\alpha} = \phi'' \cup \{\pm \beta\}$. Thus $W(\phi_{\alpha})W_K(\phi)$ is generated by $W(\phi'')$, s_{α} and s_{β} . In particular, $v\beta = \pm \beta$ for all $v \in W(\phi_{\alpha})W_K(\phi)$. But $u\beta = \alpha$ and $s_{\alpha}u\beta = -\alpha$. Thus u and $s_{\alpha}u$ are both not elements of $W(\phi_{\alpha})W_K(\phi)$, and we have

$$c(u:E^*:\phi_\alpha\cap u\phi^+)=c(s_\alpha u:E^*:\phi_\alpha\cap u\phi^+)=0$$

by definition.

Now suppose that β is one of the good roots, and let ϕ^+ be an ordering for which β is simple. Then we have the patching condition

$$c(1:E^*:\phi^+) + c(s_\beta:E^*:\phi^+) = c(1:E^*:\phi_\beta^+) + c(s_\beta:E^*:\phi_\beta^+).$$

If $\beta = e_1 - e_2$ is the short compact root, then $s_\beta \in W_K(\phi)$, so

$$c(s_{\beta}: E^*: \phi_{\beta}^+) = c(1: (s_{\beta}E^*)_{\beta}: \phi_{\beta}^+) = c(1: E_{\beta}^*: \phi_{\beta}^+) = c(1: E^*: \phi_{\beta}^+).$$

If β is one of the long roots, then $s_{\beta} \notin W(\phi_{\beta})W_K(\phi)$, so that $c(s_{\beta} : E^* : \phi_{\beta}^+) = 0$.

Let β_1, β_2 be any roots of Φ . We say $\beta_1 \equiv \beta_2$ if either both β_1 and β_2 are compact or both are noncompact.

Lemma 4.4. Suppose that the left hand side of (4.1) is non-zero. Then $w^{-1}\alpha \equiv \alpha$.

Proof. By Lemma 4.2, the left hand side of (4.1) is

$$c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi, w^{-1}\alpha)} \epsilon(\phi : w^{-1}\Phi^+) [c(1 : E^* : \phi \cap w^{-1}\Phi^+) + c(1 : E^* : \phi \cap w^{-1}s_\alpha\Phi^+)].$$

Suppose that α is any simple root in a factor of type A_1, D_{2n}, E_7, E_8 , or G_2 , or is a long simple root in a factor of type B_n, C_n , or F_4 . Then α is noncompact since Φ^+ is a good choice of positive roots. If the left hand side of (4.1) is non-zero, then $w^{-1}\alpha \in \phi$ for at least one $\phi \in \mathcal{T}_n(\Phi)$. But $w^{-1}\alpha$ is in a factor of type A_1 of ϕ or is a long root in a factor of type $B_2 \simeq C_2$, and hence is noncompact.

Thus $w^{-1}\alpha \equiv \alpha$.

Now suppose that α is a short simple root in a factor of type B_{2n}, C_n , or F_4 . Then α must be compact. Suppose that $\beta = w^{-1}\alpha$ is noncompact. Fix $\phi \in \mathcal{T}_n(\Phi, w^{-1}\alpha)$. Then $\beta \in \phi$ is a short noncompact root which is simple for the ordering $\phi \cap w^{-1}\Phi^+$. Furthermore, $w^{-1}s_{\alpha} = s_{\beta}w^{-1}$, so that

$$c(1:E^*:\phi\cap w^{-1}s_{\alpha}\Phi^+)=c(1:E^*:s_{\beta}(\phi\cap w^{-1}\Phi^+))=c(s_{\beta}:E^*:\phi\cap w^{-1}\Phi^+).$$

By Lemma 4.3,

$$c(1:E^*:\phi\cap w^{-1}\Phi^+)+c(s_\beta:E^*:\phi\cap w^{-1}\Phi^+)=0$$

Thus in this case also, the left hand side of (4.1) is zero unless $w^{-1}\alpha \equiv \alpha$.

Finally, suppose that α is a short simple root in a factor of type B_{2n+1} . Then α is noncompact. Suppose that $\beta = w^{-1}\alpha$ is compact and fix $\phi \in \mathcal{T}_n(\Phi, w^{-1}\alpha)$. Since β is compact it cannot occur in the factor of ϕ of type A_1 . Thus it occurs in a factor of type B_2 . Write $\phi = \phi_1 \cup \phi_2 \cup \phi_3$, where ϕ_2 is the irreducible factor of ϕ containing β , ϕ_3 is the irreducible factor of ϕ of type A_1 , and ϕ_1 is the union of all other irreducible factors. Then $\phi_2 \cap w^{-1}\Phi^+ = \{\beta, \beta_2, \beta_2 \pm \beta\}$ and $\phi_3 \cap w^{-1}\Phi^+ = \{\beta_3\}$, where β_2, β_3 are short noncompact roots. Define $\phi' = \phi_1 \cup \phi'_2 \cup \phi'_3$, where $\phi'_2 \cap w^{-1}\Phi^+ = \{\beta, \beta_2, \beta_3, \beta_3, \beta_4, \beta_5\}$

 $\{\beta, \beta_3, \beta_3 \pm \beta\}$ and $\phi'_3 \cap w^{-1}\Phi^+ = \{\beta_2\}$. Then $\phi' = s_\delta \phi \in \mathcal{T}_n(\Phi, w^{-1}\alpha)$ and $\phi' \cap w^{-1}\Phi^+ = s_\delta(\phi \cap w^{-1}\Phi^+)$, where $\delta = \beta_2 - \beta_3$. Thus, by (3.7), $\epsilon(\phi' : w^{-1}\Phi^+) = -\epsilon(\phi : w^{-1}\Phi^+)$.

Further, β is a good root for ϕ and ϕ' , and $\phi_{\beta} = \phi'_{\beta}$. Thus, again using Lemma 4.3,

$$c(1:E^*:\phi\cap w^{-1}\Phi^+) + c(1:E^*:\phi\cap w^{-1}s_{\alpha}\Phi^+)$$

$$= c(1:E^*:\phi\cap w^{-1}\Phi^+) + c(s_{\beta}:E^*:\phi\cap w^{-1}\Phi^+),$$

$$2c(1:E^*:\phi_{\beta}\cap w^{-1}\Phi^+) = 2c(1:E^*:\phi'_{\beta}\cap w^{-1}\Phi^+)$$

$$= c(1:E^*:\phi'\cap w^{-1}\Phi^+) + c(1:E^*:\phi'\cap w^{-1}s_{\alpha}\Phi^+).$$

Thus when $w^{-1}\alpha \not\equiv \alpha$, terms on the left hand of (4.1) can be grouped in pairs which cancel.

Let $\beta \in \Phi$. We will say that β is of type I if β is a long root in an irreducible factor of Φ of type $C_n, n \geq 1$. (Note this includes the cases that β is in an irreducible factor of type $A_1 \simeq C_1$ or is a long root in an irreducible factor of Φ of type $B_2 \simeq C_2$.) Otherwise we will say that β is of type II.

Lemma 4.5. Let $w \in W$. Then $w^{-1}\alpha \equiv \alpha$ if and only if $w \in W(\Phi_{\alpha})W_K \cup s_{\alpha}W(\Phi_{\alpha})W_K$. Further, when α is of type I, W is the disjoint union of $W(\Phi_{\alpha})W_K$ and $s_{\alpha}W(\Phi_{\alpha})W_K$. When α is of type II, $W(\Phi_{\alpha})W_K = s_{\alpha}W(\Phi_{\alpha})W_K$.

Proof. When α is of type I, $w^{-1}\alpha \equiv \alpha$ for all $w \in W$ since all long roots in irreducible factors of type $C_n, n \geq 1$, are noncompact. It is also easy to check in this case (see §5) that W is the disjoint union of $W(\Phi_{\alpha})W_K$ and $s_{\alpha}W(\Phi_{\alpha})W_K$. Thus the result is true trivially.

Suppose that α is of type II and $w^{-1}\alpha \equiv \alpha$. We check case by case in §5 that $w^{-1}\alpha$ and α are conjugate via an element of W_K . That is, there is $w_2 \in W_K$ such that $w_2w^{-1}\alpha = \alpha$. This implies that $w_2w^{-1} \in W(\Phi_\alpha)$, so that $w \in W(\Phi_\alpha)W_K$. Conversely, suppose that $w \in W(\Phi_\alpha)W_K$ and write $w = w_1w_2$, where $w_1 \in W(\Phi_\alpha)$, $w_2 \in W_K$. Then $w^{-1}\alpha = w_2^{-1}\alpha \equiv \alpha$, since $W(\Phi_\alpha)$ fixes α and W_K preserves compact and noncompact roots. Thus $w^{-1}\alpha \equiv \alpha$ if and only if $w \in W(\Phi_\alpha)W_K$ in this case. Finally, note that $w^{-1}s_\alpha\alpha = -w^{-1}\alpha \equiv \alpha$ if and only if $w^{-1}\alpha \equiv \alpha$. Thus $w \in W(\Phi_\alpha)W_K$ if and only if $s_\alpha w \in W(\Phi_\alpha)W_K$ in this case, so that $W(\Phi_\alpha)W_K = s_\alpha W(\Phi_\alpha)W_K$.

Lemma 4.6. Suppose that $w \notin W(\Phi_{\alpha})W_K \cup s_{\alpha}W(\Phi_{\alpha})W_K$. Then both sides of equation (4.1) are zero.

Proof. In this case both w and $s_{\alpha}w$ are not elements of $W(\Phi_{\alpha})W_{K}$. Thus $s(w:E^{*}:\Phi_{\alpha}^{+})$ and $s(s_{\alpha}w:E^{*}:\Phi_{\alpha}^{+})$ are both defined to be zero, and so the right hand side of (4.1) is zero. Further, by Lemma 4.5, $w^{-1}\alpha \not\equiv \alpha$ in this case. Thus by Lemma 4.4 the left hand side of (4.1) is also zero.

Because of Lemma 4.6, it suffices to prove (4.1) in the case that $w \in W(\Phi_{\alpha})W_K \cup s_{\alpha}W(\Phi_{\alpha})W_K$. In fact, since both sides of (4.1) are symmetric in $w, s_{\alpha}w$, we may as well assume that $w \in W(\Phi_{\alpha})W_K$. Define

$$c(\alpha, \Phi) = \begin{cases} 1 & \text{if } \alpha \text{ is of type I;} \\ 2 & \text{if } \alpha \text{ is of type II.} \end{cases}$$

Note that this is consistent with the notation $c(\alpha, \phi)$ for $\phi \in \mathcal{T}_n(\Phi, \alpha)$ used in Lemma 4.3, since a good root $\alpha \in \phi$ is of type I if it is long and is of type II if it is short.

Lemma 4.7. Suppose $w = w_1 w_2$ where $w_1 \in W(\Phi_\alpha), w_2 \in W_K$. Then

$$s(w: E^*: \Phi^+) + s(s_{\alpha}w: E^*: \Phi^+)$$

$$= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi, \alpha)} \epsilon(\phi: w_1^{-1}\Phi^+) [c(1: w_2E^*: \phi \cap w_1^{-1}\Phi^+) + c(s_{\alpha}: w_2E^*: \phi \cap w_1^{-1}\Phi^+)]$$

and

$$s(w: E^*: \Phi_{\alpha}^+) + s(s_{\alpha}w: E^*: \Phi_{\alpha}^+)$$
$$= c(\Phi_{\alpha})c(\alpha, \Phi) \sum_{\psi \in \mathcal{T}_n(\Phi_{\alpha})} \epsilon(\psi: w_1^{-1}\Phi_{\alpha}^+)c(1: (w_2 E^*)_{\alpha}: \psi \cap w_1^{-1}\Phi_{\alpha}^+).$$

Proof. By Lemma 4.1, the constants $s(w:E^*:\Phi^+)$ satisfy (3.2). Thus we have

$$s(w_1w_2 : E^* : \Phi^+) + s(s_{\alpha}w_1w_2 : E^* : \Phi^+)$$

= $s(w_1 : w_2E^* : \Phi^+) + s(s_{\alpha}w_1 : w_2E^* : \Phi^+).$

Now applying Lemma 4.2 in the case that $w = w_1$ and noting that $w_1^{-1}\alpha = \alpha, w_1^{-1}s_\alpha = s_\alpha w_1^{-1}$, we get

$$\begin{split} s(w_1:w_2E^*:\Phi^+) + s(s_\alpha w_1:w_2E^*:\Phi^+) \\ &= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi,\alpha)} \epsilon(\phi:w_1^{-1}\Phi^+) [c(1:w_2E^*:\phi \cap w_1^{-1}\Phi^+) \\ &\quad + c(1:w_2E^*:\phi \cap w_1^{-1}s_\alpha\Phi^+)] \\ &= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi,\alpha)} \epsilon(\phi:w_1^{-1}\Phi^+) [c(1:w_2E^*:\phi \cap w_1^{-1}\Phi^+) \\ &\quad + c(s_\alpha:w_2E^*:\phi \cap w_1^{-1}\Phi^+)]. \end{split}$$

For the second equation, by definition,

$$s(w: E^*: \Phi_{\alpha}^+) = s(w_1: (w_2 E^*)_{\alpha}: \Phi_{\alpha}^+)$$
$$= c(\Phi_{\alpha}) \sum_{\psi \in \mathcal{T}_n(\Phi_{\alpha})} \epsilon(\psi: w_1^{-1} \Phi_{\alpha}^+) c(1: (w_2 E^*)_{\alpha}: \psi \cap w_1^{-1} \Phi_{\alpha}^+).$$

If α is of type I, $w \in W(\Phi_{\alpha})W_K$ implies that $s_{\alpha}w \notin W(\Phi_{\alpha})W_K$, so that

$$s(s_{\alpha}w:E^*:\Phi_{\alpha}^+)=0.$$

Since $c(\alpha, \Phi) = 1$ in this case, the second equation holds.

If α is of type II, $c(\alpha, \Phi) = 2$, so that we must show that

$$s(s_{\alpha}w: E^*: \Phi_{\alpha}^+) = c(\Phi_{\alpha}) \sum_{\psi \in \mathcal{I}_n(\Phi_{\alpha})} \epsilon(\psi: w_1^{-1}\Phi_{\alpha}^+) c(1: (w_2 E^*)_{\alpha}: \psi \cap w_1^{-1}\Phi_{\alpha}^+).$$

In this case $s_{\alpha} \in W(\Phi_{\alpha})W_K$. Write $s_{\alpha} = u_1u_2$, where $u_1 \in W(\Phi_{\alpha})$ and $u_2 \in W_K$. Note that $u_1^{-1}\alpha = \alpha$ and

$$u_2^{-1}\alpha = u_2^{-1}u_1^{-1}\alpha = s_\alpha\alpha = -\alpha.$$

Also

$$s_{\alpha}w = s_{\alpha}w_1w_2 = w_1s_{\alpha}w_2 = (w_1u_1)(u_2w_2)$$

is the decomposition of $s_{\alpha}w$ in $W(\Phi_{\alpha})W_{K}$. Thus, by definition,

$$s(s_{\alpha}w:E^*:\Phi_{\alpha}^+)=s(w_1u_1:(u_2w_2E^*)_{\alpha}:\Phi_{\alpha}^+)$$

$$= c(\Phi_{\alpha}) \sum_{\psi \in \mathcal{T}_n(\Phi_{\alpha})} \epsilon(\psi : u_1^{-1} w_1^{-1} \Phi_{\alpha}^+) c(1 : (u_2 w_2 E^*)_{\alpha} : \psi \cap u_1^{-1} w_1^{-1} \Phi_{\alpha}^+).$$

Since $u_2 \in W_K$, and $u_2\alpha = -\alpha$, it follows that $u_2 : \Phi_\alpha \to \Phi_\alpha$ is an automorphism which preserves compact roots. Thus $u_2\mathcal{T}_n(\Phi_\alpha) = \mathcal{T}_n(\Phi_\alpha)$ and we can rewrite

$$s(s_{\alpha}w:\tau:\Phi_{\alpha}^{+}) = c(\Phi_{\alpha}) \sum_{\psi \in \mathcal{I}_{n}(\Phi_{\alpha})} \epsilon(u_{2}\psi:u_{1}^{-1}w_{1}^{-1}\Phi_{\alpha}^{+})c(1:(u_{2}w_{2}E^{*})_{\alpha}:u_{2}\psi \cap u_{1}^{-1}w_{1}^{-1}\Phi_{\alpha}^{+}).$$

But by (3.8),

$$\epsilon(u_2\psi:u_1^{-1}w_1^{-1}\Phi_\alpha^+) = \epsilon(u_1u_2\psi:w_1^{-1}\Phi_\alpha^+) = \epsilon(\psi:w_1^{-1}\Phi_\alpha^+)$$

since $u_1u_2\psi = s_\alpha\psi = \psi$. Further, $(u_2w_2E^*)_\alpha = u_2(w_2E^*)_\alpha$ and so, using (3.6) for the automorphism $u_2: \Phi_\alpha \to \Phi_\alpha$,

$$c(1:(u_2w_2E^*)_{\alpha}:u_2\psi\cap u_1^{-1}w_1^{-1}\Phi_{\alpha}^+)=c(1:(w_2E^*)_{\alpha}:\psi\cap u_2^{-1}u_1^{-1}w_1^{-1}\Phi_{\alpha}^+).$$

Again,

$$u_2^{-1}u_1^{-1}w_1^{-1}\Phi_\alpha^+ = s_\alpha w_1^{-1}\Phi_\alpha^+ = w_1^{-1}\Phi_\alpha^+.$$

Lemma 4.8. Suppose that α is a good root of $\phi \in \mathcal{T}_n(\Phi, \alpha)$. Then $\phi_{\alpha} \in \mathcal{T}_n(\Phi_{\alpha})$ unless α is a long root in an irreducible factor of Φ of type C_{2n+1} , and is in an irreducible factor of ϕ of type C_2 .

Proof. Since α is a good root of $\phi \in \mathcal{T}_n(\Phi, \alpha)$, ϕ_{α} is spanned by strongly orthogonal noncompact roots. Thus we need only check when ϕ_{α} is a two-structure for Φ_{α} . This depends only on the irreducible factor of Φ containing α , so we may as well assume that Φ is irreducible. If Φ is of type A_1, D_{2n}, E_7, E_8 , or G_2 , then every $\phi \in \mathcal{T}(\Phi)$ is of type A_1^k , and ϕ_{α} is of type A_1^{k-1} , which is a two-structure for Φ_{α} . If Φ is of type B_{2n}, C_{2n} , or F_4 , then every $\phi \in \mathcal{T}(\Phi)$ is of type B_2^n and ϕ_α is of type $B_2^{n-1} \times A_1$, which is a two-structure for Φ_{α} . Suppose that Φ is of type B_{2n+1} or C_{2n+1} . Then every $\phi \in \mathcal{T}(\Phi)$ is of type $B_2^n \times A_1$. If α is a long root in the B_{2n+1} case or a short root in the C_{2n+1} case, then Φ_{α} is of type $B_{2n-1} \times A_1$ or $C_{2n-1} \times A_1$. Further, α must be in a factor of type $B_2 \simeq C_2$ of ϕ , so that ϕ_{α} is of type $B_2^{n-1} \times A_1 \times A_1$, which is a two-structure for Φ_{α} . Now suppose that α is the short simple root in the B_{2n+1} case or the long simple root in the C_{2n+1} case. Then Φ_{α} is of type B_{2n} or C_{2n} . If α is in the A_1 factor of ϕ , then $\phi_{\alpha} \in \mathcal{T}(\Phi_{\alpha})$ since it is of type B_2^n . However, if α is in a B_2 factor of ϕ , then ϕ_{α} is of type $B_2^{n-1} \times A_1 \times A_1$. This is not a two-structure for Φ_{α} . However in the B_{2n+1} case, α is the short simple root and so is noncompact. It is not good in ϕ when it occurs in a B_2 factor. Thus the C_{2n+1} case gives the only exception.

Define

$$\mathcal{T}_n(\Phi, \alpha)' = \{ \phi \in \mathcal{T}_n(\Phi, \alpha) : \phi_\alpha \in \mathcal{T}_n(\Phi_\alpha) \}.$$

Suppose that α is not a good root of $\phi \in \mathcal{T}_n(\Phi, \alpha)$. Then ϕ_{α} is not spanned by strongly orthogonal noncompact roots, so that it cannot be in $\mathcal{T}_n(\Phi_{\alpha})$. Thus if

 $\phi \in \mathcal{T}_n(\Phi, \alpha)'$, then α is a good root for ϕ so that $c(\alpha, \phi)$ is defined as in Lemma 4.3.

Lemma 4.9. Let $w = w_1w_2$, where $w_1 \in W(\Phi_\alpha), w_2 \in W_K$. Then

$$s(w: E^*: \Phi^+) + s(s_{\alpha}w: E^*: \Phi^+)$$

$$= c(\Phi) \sum_{\phi \in \mathcal{T}_{\alpha}(\Phi, \alpha)'} c(\alpha, \phi) \epsilon(\phi_{\alpha}: w_1^{-1} \Phi_{\alpha}^+) c(1: (w_2 E^*)_{\alpha}: \phi_{\alpha} \cap w_1^{-1} \Phi_{\alpha}^+).$$

Proof. By Lemma 4.7,

$$s(w: E^*: \Phi^+) + s(s_{\alpha}w: E^*: \Phi^+)$$

$$= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi, \alpha)} \epsilon(\phi: w_1^{-1}\Phi^+) [c(1: w_2E^*: \phi \cap w_1^{-1}\Phi^+)]$$

$$+ c(s_{\alpha}: w_2E^*: \phi \cap w_1^{-1}\Phi^+)].$$

If α is not a good root of ϕ , then by Lemma 4.3,

$$c(1: w_2 E^*: \phi \cap w_1^{-1} \Phi^+) + c(s_\alpha : w_2 E^*: \phi \cap w_1^{-1} \Phi^+) = 0.$$

If α is a good root of ϕ , then, again by Lemma 4.3,

$$c(1: w_2 E^*: \phi \cap w_1^{-1} \Phi^+) + c(s_\alpha : w_2 E^*: \phi \cap w_1^{-1} \Phi^+)$$

= $c(\alpha, \phi) c(1: (w_2 E^*)_\alpha : \phi_\alpha \cap w_1^{-1} \Phi_\alpha^+).$

Further, by Lemma 4.8, $\phi \in \mathcal{T}_n(\Phi, \alpha)'$ unless α is a long root in an irreducible factor of Φ of type C_{2n+1} , and is in an irreducible factor of ϕ of type C_2 . In this case write $\phi = \phi_1 \cup \phi_2 \cup \phi_3$, where ϕ_2 is the irreducible factor of ϕ containing α , ϕ_3 is the irreducible factor of ϕ of type C_1 , and ϕ_1 is the union of all other irreducible factors. Then

$$\phi_2 \cap w_1^{-1} \Phi^+ = \{\alpha, \alpha_2, \frac{1}{2} (\alpha_2 \pm \alpha)\}$$

and $\phi_3 \cap w_1^{-1}\Phi^+ = \{\alpha_3\}$, where α_2, α_3 are long roots. Define $\phi' = \phi_1 \cup \phi_2' \cup \phi_3'$, where

$$\phi_2' \cap w_1^{-1} \Phi^+ = \{\alpha, \alpha_3, \frac{1}{2}(\alpha_3 \pm \alpha)\}$$

and $\phi_3' \cap w_1^{-1} \Phi^+ = {\{\alpha_2\}}$. Then

$$\phi' = s_{\delta} \phi \in \mathcal{T}_n(\Phi, \alpha)$$
 and $\phi' \cap w_1^{-1} \Phi^+ = s_{\delta} (\phi \cap w_1^{-1} \Phi^+),$

where $\delta = 1/2(\alpha_2 - \alpha_3)$. Thus, by (3.7),

$$\epsilon(\phi': w_1^{-1}\Phi^+) = -\epsilon(\phi: w_1^{-1}\Phi^+).$$

Further, $\phi_{\alpha} \cap w_1^{-1}\Phi^+ = (\phi_1 \cap w_1^{-1}\Phi^+) \cup \{\alpha_2, \alpha_3\} = \phi_{\alpha}' \cap w_1^{-1}\Phi^+$. Thus terms corresponding to the case that α is a long root in an irreducible factor of Φ of type C_{2n+1} , and is in an irreducible factor of ϕ of type C_2 , can be grouped in pairs which cancel.

Finally, for $\phi \in \mathcal{T}_n(\Phi, \alpha)'$, since α is a simple root for $w_1^{-1}\Phi^+$, by Lemma 3.3 we have

$$\epsilon(\phi: w_1^{-1}\Phi^+) = \epsilon(\phi_\alpha: w_1^{-1}\Phi_\alpha^+).$$

For any root $\beta \in \Phi$, define

$$\mathcal{T}(\Phi, \beta)' = \{ \phi \in \mathcal{T}(\Phi) : \beta \in \phi \text{ and } \phi_{\beta} \in \mathcal{T}(\Phi_{\beta}) \}.$$

Lemma 4.10. If β is any root of Φ , then $\phi \mapsto \phi_{\beta}$ gives a bijection between $\mathcal{T}(\Phi, \beta)'$ and $\mathcal{T}(\Phi_{\beta})$. Further, $\phi \mapsto \phi_{\alpha}$ gives a bijection between $\mathcal{T}_n(\Phi, \alpha)'$ and $\mathcal{T}_n(\Phi_{\alpha})$.

Proof. We may as well assume that Φ is irreducible. By definition, if $\phi \in \mathcal{T}(\Phi, \beta)'$, then $\phi_{\beta} \in \mathcal{T}(\Phi_{\beta})$. Now fix $\psi \in \mathcal{T}(\Phi_{\beta})$. Suppose that $\phi = \psi \cup \{\pm \beta\}$ is a two-structure for Φ . (This will always be the case when Φ is of type A_1, D_{2n}, E_7, E_8 , or G_2 , since in these cases all $\phi \in \mathcal{T}(\Phi)$ are of type A_1^k .) Then clearly $\phi_{\beta} = \psi$. Further, if $\phi' \in \mathcal{T}(\Phi, \beta)'$ with $(\phi')_{\beta} = \psi$, then $\phi \subset \phi'$. But all two-structures of Φ are isomorphic, so $\phi = \phi'$.

Thus we can assume that $\psi \cup \{\pm \beta\}$ is not a two-structure for Φ . Then Φ is of type B_n, C_n , or F_4 and Φ_β is of type $B_{n-1}, B_{n-2} \times A_1, C_{n-1}, C_{n-2} \times A_1, C_3$, or B_3 . In any of these cases, ψ has at most 2 irreducible factors of type A_1 , and if it has two, they are spanned by roots of different lengths. If ψ has no irreducible factors of type A_1 , then $\psi \cup \{\pm \beta\}$ is a two-structure for Φ . Thus in the case that $\psi \cup \{\pm \beta\}$ is not a two-structure for Φ , ψ has a unique irreducible factor ψ_1 of type A_1 spanned by a root β' of the same length as β , and β, β' span an irreducible factor ϕ_1 of Φ of type B_2 . Write $\psi = \psi_0 \cup \psi_1$. Then $\phi = \psi_0 \cup \phi_1$ is the unique two-structure of Φ such that $\phi_\beta = \psi$. This completes the proof of the first statement.

By definition, if $\phi \in \mathcal{T}_n(\Phi, \alpha)'$, then $\phi_\alpha \in \mathcal{T}_n(\Phi_\alpha)$. Now suppose that $\psi \in \mathcal{T}_n(\Phi_\alpha)$. By the first part, there is a unique $\phi \in \mathcal{T}(\Phi, \alpha)'$ such that $\phi_\alpha = \psi$. To show that $\phi \in \mathcal{T}_n(\Phi, \alpha)'$, we just need to show that ϕ is spanned by a strongly orthogonal collection of noncompact roots. Write $\phi = \phi_0 \cup \phi_1$, where ϕ_1 denotes the irreducible factor of ϕ containing α . Then $\phi_0 \subset \phi_\alpha$, so that it is spanned by strongly orthogonal noncompact roots. Now

$$\phi_1 = \begin{cases} \{\pm \alpha\}, & \text{if } \phi_1 \text{ is of type } A_1, \\ \{\pm \alpha, \pm \beta, \pm \beta \pm \alpha\}, & \text{if } \phi_1 \text{ is of type } B_2 \text{ and } \alpha \text{ is short,} \\ \{\pm \alpha, \pm \beta, \pm 1/2(\beta \pm \alpha)\}, & \text{if } \phi_1 \text{ is of type } B_2 \text{ and } \alpha \text{ is long,} \end{cases}$$

and

$$\phi_{\alpha} = \phi_0 \cup \begin{cases} \emptyset, & \text{if } \phi_1 \text{ is of type } A_1, \\ \{\pm \beta\}, & \text{if } \phi_1 \text{ is of type } B_2. \end{cases}$$

Note that in the B_2 case, β is in an irreducible factor of ϕ_{α} of type A_1 and hence must be noncompact.

Suppose that α is compact. This occurs only when α is a short root in an irreducible factor of Φ of type B_{2n}, C_n , or F_4 . In these cases ϕ_1 must be of type B_2 . Since α is compact and β is noncompact, $\alpha \pm \beta$ are strongly orthogonal noncompact roots spanning ϕ_1 . Now suppose that α is noncompact. In the A_1 case it spans ϕ_1 . In the B_2 case, if α is a long root, then so is β , and α, β are strongly orthogonal noncompact roots spanning ϕ_1 . The case that α is a short noncompact root in a B_2 factor cannot occur. This is because Φ would have to be of type B_{2n+1} to have a short noncompact good root α . Then, as in the proof of Lemma 4.8, for $\phi \in \mathcal{T}(\Phi, \alpha), \ \phi_{\alpha} \in \mathcal{T}(\Phi_{\alpha})$ implies that α is in an irreducible factor of type A_1 of ϕ .

Lemma 4.11. Let $\phi \in \mathcal{T}_n(\Phi, \alpha)'$. Then

$$c(\Phi)$$
 $c(\alpha, \phi) = c(\Phi_{\alpha})$ $c(\alpha, \Phi)$.

Proof. As usual it is enough to check the case that Φ is irreducible. Suppose that Φ is of type D_{2n} , $n \geq 2$, E_7 , E_8 , or E_9 . Then E_9 is of type E_9 , E_9 , or E_9 is of type II, so that E_9 is that E_9 is usual it is enough to the following E_9 is of type II, so that E_9 is that E_9 is the following irreducible factor of E_9 is of type E_9 , so that E_9 is that E_9 is the following irreducible factor of E_9 is the following irreducible factor of E_9 . This follows immediately by inspection from the table preceding Theorem 3.4. The proof in the other cases is given in §5.

Proof of Theorem 3.4. Because of Lemma 4.1, it is enough to show that the constants $s(w:E^*:\Phi^+)$ satisfy the patching conditions for every $w\in W, E^*\subset E'$, when α is a simple root for a good choice Φ^+ of positive roots. Because of Lemma 4.6, it is enough to prove the patching conditions for $w=w_1w_2\in W(\Phi_\alpha)W_K$. Using Lemmas 4.7 and 4.9, we have

$$s(w_1w_2: E^*: \Phi^+) + s(s_{\alpha}w_1w_2: E^*: \Phi^+)$$

$$= c(\Phi) \sum_{\phi \in \mathcal{T}_n(\Phi, \alpha)'} c(\alpha, \phi) \epsilon(\phi_{\alpha}: w_1^{-1}\Phi_{\alpha}^+) c(1: (w_2E^*)_{\alpha}: \phi_{\alpha} \cap w_1^{-1}\Phi_{\alpha}^+);$$

$$s(w_1w_2: E^*: \Phi_{\alpha}^+) + s(s_{\alpha}w_1w_2: E^*: \Phi_{\alpha}^+)$$

$$= c(\Phi_{\alpha}) c(\alpha, \Phi) \sum_{\psi \in \mathcal{T}_n(\Phi_{\alpha})} \epsilon(\psi: w_1^{-1}\Phi_{\alpha}^+) c(1: (w_2E^*)_{\alpha}: \psi \cap w_1^{-1}\Phi_{\alpha}^+).$$

Using Lemma 4.10, it suffices to prove that for all $\phi \in \mathcal{T}_n(\Phi, \alpha)'$,

$$c(\Phi)$$
 $c(\alpha, \phi) = c(\Phi_{\alpha})$ $c(\alpha, \Phi)$.

This is Lemma 4.11.

5. Technical Lemmas

We still need to check Lemmas 3.1, 3.3, and 4.5 for irreducible root systems of types C_n , $n \ge 1$, B_n , $n \ge 3$, D_{2n} , $n \ge 2$, E_7 , E_8 , F_4 , and G_2 . We also need to check Lemma 4.11 for irreducible root systems of types C_n , $n \ge 1$, B_n , $n \ge 3$, and F_4 .

The Case $\Phi = G_2$. Suppose that Φ is of type G_2 . We will write

$$\Phi^+ = \{\alpha_i, \beta_i : 1 \le i \le 3\},\$$

$$\Phi_K^+ = \{\alpha_3, \beta_3\},\$$

where the α_i are short, the β_i are long, and $\langle \alpha_i, \beta_i \rangle = 0, 1 \leq i \leq 3$. Clearly $\Phi_{\alpha_i} = \{\pm \beta_i\}, \Phi_{\beta_i} = \{\pm \alpha_i\}, 1 \leq i \leq 3$. Thus a root is good just in case it is noncompact. We can assume that the roots are numbered so that $\{\alpha_1, \beta_2\}$ is the set of simple roots for Φ^+ . Then Φ^+ is a good choice of positive roots, and every simple root for Φ^+ is good. This completes the proof of Lemma 3.1 in this case.

Because of (3.8), it is enough to prove Lemma 3.3 for the good choice Φ^+ given above. The only two-structures of Φ have positive roots $\phi_i^+ = \{\alpha_i, \beta_i\}, 1 \leq i \leq 3$. Φ^+ is the lexicographic ordering with respect to the basis β_1, α_1 of ϕ_1 . Thus, using

the definition on [K, page 501], we have $\epsilon(\phi_1:\Phi^+)=1$. Now $\phi_2^+=s_{\alpha_1}s_{\beta_2}\phi_1^+$, so that by (3.7),

$$\epsilon(\phi_2:\Phi^+) = \epsilon(\phi_1:\Phi^+) = 1.$$

Thus for each two-structure ϕ containing a simple root of Φ^+ , we have $\epsilon(\phi : \Phi^+) = 1$. For either simple root α , Φ_{α} is of type A_1 , so that for the unique two-structure ϕ containing α , $\epsilon(\phi_{\alpha} : \Phi_{\alpha}^+) = 1$. This completes the proof of Lemma 3.3.

Suppose that α is a simple root for Φ^+ and $w \in W$ with $w^{-1}\alpha \equiv \alpha$. Then α and $w^{-1}\alpha$ are both noncompact and the same length. The reflection s_{α_3} interchanges α_1 and α_2 while the reflection s_{β_3} interchanges β_1 and β_2 . Further, $s_{\alpha_3}s_{\beta_3} = -1$, so that any two noncompact roots of the same length are conjugate via W_K . This completes the proof of Lemma 4.5.

The Other Irreducible Cases. Now suppose that Φ is irreducible of type $B_n, n \ge 3, C_n, n \ge 1, D_n, n = 2k \ge 4, E_7, E_8$, or F_4 . In each case we can realize Φ as a root system in \mathbb{R}^n , where n is the rank of Φ , except in the case of E_7 , where we take n = 8. Write n = 2k or n = 2k + 1. Let Φ^+ be the positive system corresponding to the set $S(\Phi)$ of simple roots, where

$$S(B_n) = \{e_1 - e_2, e_2 - e_3, \dots, e_{n-1} - e_n, e_n\};$$

$$S(C_n) = \{e_1 - e_2, e_2 - e_3, \dots, e_{n-1} - e_n, 2e_n\};$$

$$S(D_n) = \{e_1 - e_2, e_2 - e_3, \dots, e_{n-1} - e_n, e_{n-1} + e_n\};$$

$$S(E_7) = \{e_3 - e_4, e_4 - e_5, e_5 - e_6, e_6 - e_7, e_7 + e_8, e_7 - e_8, \frac{1}{2}(e_1 - e_2 - e_3 - e_4 - e_5 - e_6 - e_7 + e_8)\};$$

$$S(E_8) = \{e_2 - e_3, e_3 - e_4, \dots, e_6 - e_7, e_7 + e_8, e_7 - e_8, \frac{1}{2}(e_1 - e_2 - e_3 - e_4 - e_5 - e_6 - e_7 + e_8)\};$$

$$S(F_4) = \{e_2 - e_3, e_3 - e_4, e_4, \frac{1}{2}(e_1 - e_2 - e_3 - e_4)\}.$$

Note that E_7 is realized as the set of roots in E_8 orthogonal to $e_1 + e_2$.

We define compact and noncompact roots in Φ by specifying that every simple root is noncompact when Φ is of type B_{2k+1} , D_{2k} , E_7 , or E_8 . If Φ is of type B_{2k} , C_n , or F_4 , all long simple roots are noncompact and all short simple roots are compact. Thus Φ^+ satisfies the condition necessary to be a good choice of positive roots.

Lemma 5.1. With the choices of compact and noncompact simple roots above, Φ is spanned by strongly orthogonal noncompact roots.

Proof. We will need the following facts, which are easily checked in each case. Let Φ be an irreducible root system of type $B_n, n \geq 3$, $C_n, n \geq 1$, $D_n, n = 2k \geq 4$, E_7, E_8 , or F_4 , and let $S = S(\Phi) = \{\alpha_1, \ldots, \alpha_r\}, r = \text{rank } \Phi$, be the set of simple roots for Φ^+ as above. Any $\gamma \in \Phi^+$ can be written as $\gamma = \sum_{i=1}^r m_i \alpha_i$, where the $m_i, 1 \leq i \leq r$, are nonnegative integers. Let γ_1 be the longest root in Φ^+ , that is, the root for which $m(\gamma_1) = \sum_{i=1}^r m_i$ is maximal. Then γ_1 is a long root, and $m(\gamma_1)$ is odd. Further, if Φ is of type B_{2k}, C_n , or F_4 , and α_i is short, then m_i is even. Thus γ_1 is a long noncompact root in Φ . Finally, if $\Phi_1^+ = \{\beta \in \Phi^+ : \langle \beta, \gamma_1 \rangle = 0\}$, then Φ_1 has rank r - 1, and the simple roots S_1 for Φ_1^+ are a subset of S.

We prove the lemma by induction on the rank of Φ . Let γ_1 be the longest root in Φ^+ , and define $\Phi_1^+, S_1 \subset S$ as above. Then if Φ is of type $B_{2k+1}, B_{2k}, C_n, D_{2k}, E_7, E_8$, or F_4 , then Φ_1 is of type $B_{2k-1} \times A_1, B_{2k-2} \times A_1, C_{n-1}, D_{2k-2} \times A_1, D_6, E_7$, or C_3 respectively, where the A_1 factors are generated by long roots. Since $S_1 \subset S$,

every long root in S_1 is noncompact. Further, when Φ_1 has an irreducible factor of type B_{2k-1} , the short simple root comes from B_{2k+1} and is noncompact. When Φ_1 has an irreducible factor of type B_{2k-2} or C_{n-1} , the short simple root comes from Φ of type B_{2k} , C_n , or F_4 , and hence is compact. Thus Φ_1^+ satisfies the condition necessary to be a good choice of positive roots. By the induction hypothesis, Φ_1^+ is generated by a set $\{\gamma_2, \ldots, \gamma_r\}$ of strongly orthogonal noncompact roots. Now $\{\gamma_1, \ldots, \gamma_r\}$ generates Φ . Since γ_1 is long and noncompact, it is a set of strongly orthogonal noncompact roots.

Lemma 5.2. Let $\alpha \in \Phi$. Then α is a good root if it satisfies one of the following. (i) Φ is of type B_{2k+1}, D_{2k}, E_7 , or E_8 , and α is noncompact;

(ii) Φ is of type B_{2k} , C_n , or F_4 , and α is long and noncompact, or short and compact.

Proof. Let $\gamma_i, 1 \leq i \leq r$, be a set of strongly orthogonal noncompact roots spanning Φ . We will use facts about expansions of roots in terms of the basis $\{\gamma_1, \ldots, \gamma_r\}$ from [K, page 513].

Assume first that Φ is not of type B_{2k+1} . Then all the γ_i 's are long roots. Let α be a long noncompact root. If $\alpha = \pm \gamma_i$ for some $1 \le i \le r$, then Φ_{α} is generated by the $\gamma_i, j \ne i$. Otherwise, there is $I \subset \{1, 2, \ldots, r\}$ with four elements such that

$$\alpha = \frac{1}{2} \sum_{i \in I} \epsilon_i \gamma_i$$

where $\epsilon_i = \pm 1, i \in I$. Assume for simplicity of notation that $I = \{1, 2, 3, 4\}$. For each $i \in I$, let s_i denote the reflection in the root γ_i . Since the γ_i 's are long noncompact roots, $s_p s_q \alpha = \alpha - \epsilon_p \gamma_p - \epsilon_q \gamma_q$ is long and noncompact for any $1 \le p \ne q \le 4$. Now the roots

$$\alpha_1 = s_3 s_4 \alpha$$
, $\alpha_2 = s_2 s_4 \alpha$, $\alpha_3 = s_2 s_3 \alpha$

are all noncompact long roots, mutually orthogonal, and orthogonal to α . Thus

$$\{\alpha_i: 1 \leq i \leq 3\} \cup \{\gamma_j: 5 \leq j \leq r\}$$

is a set of strongly orthogonal noncompact roots spanning Φ_{α} .

Now suppose that α is a short compact root. Since Φ has a short root and is not of type B_{2k+1} , Φ is of type B_{2k} , C_n , or F_4 . Then there is $I \subset \{1, 2, ..., r\}$ with two elements such that

$$\alpha = \frac{1}{2} \sum_{i \in I} \epsilon_i \gamma_i,$$

where $\epsilon_i = \pm 1, i \in I$. Assume for simplicity of notation that $I = \{1, 2\}$, and let $\alpha_1 = s_2 \alpha$. Then since α is compact, $\alpha_1 = \alpha - \epsilon_2 \gamma_2$ is noncompact and is orthogonal to α . Now

$$\{\alpha_1\} \cup \{\gamma_j : 3 \le j \le r\}$$

is a set of strongly orthogonal noncompact roots spanning Φ_{α} .

Finally, suppose that Φ is of type B_{2k+1} . Then exactly one of the γ_i 's, say γ_r , is a short root. Suppose that α is a long noncompact root. If $\langle \alpha, \gamma_r \rangle = 0$, then we can construct a basis of strongly orthogonal noncompact roots for Φ_{α} as above.

Suppose that $\langle \alpha, \gamma_r \rangle \neq 0$. Then there is $I \subset \{1, 2, \dots, r-1\}$ with two elements such that

$$\alpha = \frac{1}{2} \sum_{i \in I} \epsilon_i \gamma_i + \epsilon_r \gamma_r$$

where $\epsilon_r = \pm 1, \epsilon_i = \pm 1, i \in I$. Assume for simplicity of notation that $I = \{1, 2\}$. Then

$$\alpha_1 = s_r \alpha = \alpha - 2\epsilon_r \gamma_r$$

is a long noncompact root orthogonal to α . Further,

$$\alpha' = \frac{1}{2} \sum_{i \in I} \epsilon_i \gamma_i = \alpha - \epsilon_r \gamma_r$$

is a short compact root, and

$$\alpha_2 = s_2 \alpha' = \alpha' - \epsilon_2 \gamma_2$$

is a short noncompact root orthogonal to α and α_1 . Thus $\{\alpha_1, \alpha_2\} \cup \{\gamma_3, \dots, \gamma_{r-1}\}$ is a strongly orthogonal set of noncompact roots spanning Φ_{α} .

Suppose that α is a short noncompact root. If $\alpha = \pm \gamma_r$, then Φ_{α} is spanned by $\gamma_1, \ldots, \gamma_{r-1}$. Otherwise, $\langle \alpha, \gamma_r \rangle = 0$, and there is $I \subset \{1, 2, \ldots, r-1\}$ with two elements such that

$$\alpha = \frac{1}{2} \sum_{i \in I} \epsilon_i \gamma_i.$$

Assume for simplicity of notation that $I = \{1, 2\}$. Since α is noncompact, $\alpha' = s_2 \alpha$ is compact and short. Let

$$\alpha_1 = \alpha' + \gamma_r, \quad \alpha_2 = \alpha' - \gamma_r.$$

Then α_1 and α_2 are long noncompact roots, mutually orthogonal, and orthogonal to α . Thus $\{\alpha_1, \alpha_2\} \cup \{\gamma_3, \dots, \gamma_{r-1}\}$ is a strongly orthogonal set of noncompact roots spanning Φ_{α} .

This completes the proof of Lemma 3.1.

Proof of Lemma 3.3. Let Φ^+ be the good choice of positive roots with simple roots $S(\Phi)$ given above. Because of (3.8), it is enough to prove Lemma 3.3 for this standard choice Φ^+ . We define a two-structure ϕ_0 as follows. For $1 \leq i \leq k$, let ϕ_i be the intersection of Φ with the linear span of $\{e_{2i-1}, e_{2i}\}$. Let ϕ_{k+1} be the intersection of Φ with the linear span of $\{e_n\}$ if n=2k+1. If n=2k is even, we set $\phi_{k+1}=\emptyset$. Then

$$\phi_0 = \bigcup_{i=1}^{k+1} \phi_i$$

is called the canonical two-structure for the positive roots Φ^+ . Define an ordered orthogonal basis $B(\Phi)$ for ϕ_0 as follows.

$$B(C_n) = (2e_1, 2e_2, \dots, 2e_n);$$

$$B(B_{2k}) = B(D_{2k}) = B(E_8) = B(F_4)$$

$$= (e_1 + e_2, e_1 - e_2, \dots, e_{2k-1} + e_{2k}, e_{2k-1} - e_{2k});$$

$$B(B_{2k+1}) = (e_1 + e_2, e_1 - e_2, \dots, e_{2k-1} + e_{2k}, e_{2k-1} - e_{2k}, e_{2k+1});$$

$$B(E_7) = (e_1 - e_2, e_3 + e_4, e_3 - e_4, \dots, e_7 + e_8, e_7 - e_8).$$

This ordered basis satisfies the conditions of the definition in [K, page 501]. That is, it contains the positive root in each irreducible factor of type A_1 and the two long positive roots α_1, α_2 in each irreducible factor of type B_2 . Further, α_1 immediately precedes α_2 in the ordering when the roots are numbered so that $\alpha_1 - \alpha_2$ is twice a positive root. Now, Φ^+ is the lexicographic ordering determined by $B(\Phi)$. Thus $\epsilon(\phi_0:\Phi^+)=1$.

Suppose that α is a simple root for Φ^+ which is contained in ϕ_0 . Then $\psi_0 = (\phi_0)_{\alpha} \in \mathcal{T}(\Phi_{\alpha})$. If α is a long root in ϕ_0 , then $\alpha \in B(\Phi)$, and we define an ordered basis $B(\Phi_{\alpha})$ for ψ_0 by deleting α from $B(\Phi)$. Suppose that α is a short root in ϕ_0 , that is, a short root in an irreducible factor $\phi_i, 1 \leq i \leq k$, which is of type B_2 . Let α' be the short positive root in ϕ_i orthogonal to α , and let β_1, β_2 denote the long positive roots in ϕ_i . Then we define an ordered basis $B(\Phi_{\alpha})$ for ψ_0 by deleting β_1, β_2 from $B(\Phi)$, and replacing them with α' . In either case $B(\Phi_{\alpha})$ is a basis for ψ_0 satisfying the conditions in [K, page 591], and $\Phi_{\alpha}^+ = \Phi_{\alpha} \cap \Phi^+$ is the lexicographic ordering determined by $B(\Phi_{\alpha})$. Thus

$$\epsilon((\phi_0)_\alpha : \Phi_\alpha^+) = 1 = \epsilon(\phi_0 : \Phi^+).$$

Now suppose that α is a simple root that is not in ϕ_0 . It is easy to check by looking at the lists of simple roots $S(\Phi)$ above that there is a simple root α' such that $\alpha' \in \phi_0$, α and α' have the same length, and $\langle \alpha, \alpha' \rangle \neq 0$. Write $\sigma = s_{\alpha'} s_{\alpha}$. Then $\alpha = \sigma \alpha' \in \sigma \phi_0$. Since α and α' are simple,

$$\Phi^+ \cap \sigma^{-1}\Phi^- = \{\alpha, \beta\},\$$

where $\beta = s_{\alpha}\alpha' = \alpha + \alpha'$. Since β has the same length as α' , but is not orthogonal to α' , it cannot be in ϕ_0 . Further, $\alpha \notin \phi_0$ by assumption. Thus $\sigma \phi_0^+ \subset \Phi^+$. Also, β and α are not in $\Phi_{\alpha'}$, so that $\sigma \Phi_{\alpha'}^+ \subset \Phi^+$. Thus

$$\epsilon(\sigma\phi_0:\Phi^+)=\det\sigma=1$$

and

$$\epsilon((\sigma\phi_0)_{\alpha}:\Phi_{\alpha}^+)=\epsilon((\phi_0)_{\alpha'}:\Phi_{\alpha'}^+)=1,$$

since

$$\sigma^{-1}(\sigma\phi_0)_{\alpha} = (\phi_0)_{\alpha'}$$

and

$$\sigma^{-1}\Phi_{\alpha}^{+}=\sigma^{-1}(\Phi_{\alpha}\cap\Phi^{+})=\Phi_{\alpha'}\cap\sigma^{-1}\Phi^{+}=\Phi_{\alpha'}^{+}.$$

Thus for each simple root α of Φ^+ we have found one two-structure ϕ_1 such that $\alpha \in \phi_1, \psi_1 = (\phi_1)_{\alpha} \in \mathcal{T}(\Phi_{\alpha})$, and

$$\epsilon(\phi_1:\Phi^+)=\epsilon(\psi_1:\Phi^+_\alpha)=1.$$

Now take an arbitrary $\phi \in \mathcal{T}(\Phi)$ such that $\alpha \in \phi$ and $\phi_{\alpha} \in \mathcal{T}(\Phi_{\alpha})$. Then there is $\sigma \in W(\psi_1, \Phi_{\alpha}^+)$ such that $\phi_{\alpha}^+ = \sigma \psi_1^+$. Let ϕ_2 be the irreducible factor of ϕ_1 containing α . Then

$$\phi_2^+ = \begin{cases} \{\alpha\}, & \text{if } \phi_2 \text{ is of type } A_1; \\ \{\alpha, \beta, \beta \pm \alpha\}, & \text{if } \phi_2 \text{ is of type } B_2 \text{ and } \alpha \text{ is short;} \\ \{\alpha, \beta, \frac{1}{2}(\beta \pm \alpha)\}, & \text{if } \phi_2 \text{ is of type } B_2 \text{ and } \alpha \text{ is long.} \end{cases}$$

Now $\sigma\psi_1^+ \subset \Phi_\alpha^+$ and $\sigma\alpha = \alpha$. Further, when ϕ_2 is of type B_2 we have $\beta \in \psi_1^+$ so that $\sigma\beta \in \Phi_\alpha^+$. Now since α is simple for Φ^+ , we have $\sigma c(\beta \pm \alpha) = c(\sigma\beta \pm \alpha) \in \Phi^+$, where c = 1 if α is short and c = 1/2 if α is long. Thus $\sigma\phi_1^+ \subset \Phi^+$ and

$$\epsilon(\sigma\phi_1:\Phi^+)=\det\sigma=\epsilon(\phi_\alpha:\Phi_\alpha^+).$$

Finally, since $\sigma \alpha = \alpha$, $(\sigma \phi_1)_{\alpha} = \sigma(\phi_1)_{\alpha} = \phi_{\alpha}$. This implies that $\sigma \phi_1 = \phi$ by Lemma 4.10.

Proof of Lemma 4.5. Suppose that α is a simple root of type I. Thus $\Phi = C_n, n \geq 1$, and $\alpha = 2e_n$. Then $\Phi_{\alpha} = C_{n-1}$, so that $W(\Phi_{\alpha})$ contains all sign changes except s_{α} . W_K contains all permutations, so that W is the disjoint union of $W(\Phi_{\alpha})W_K$ and $s_{\alpha}W(\Phi_{\alpha})W_K$.

Suppose that α is a simple root of type II and $w^{-1}\alpha \equiv \alpha$ for $w \in W(\Phi)$. We must show that α and $w^{-1}\alpha$ are conjugate via W_K . Since α and $w^{-1}\alpha$ have the same length, it will suffice to show that α and β are conjugate via W_K if $\beta \equiv \alpha$ and has the same length as α .

If α is compact, then Φ is of type B_{2k}, C_n , or F_4 , and α is short. Φ_K is of type $B_k \times D_k, A_{n-1}$, or $A_1 \times C_3$ respectively, and when $\Phi = F_4$, the A_1 factor in Φ_K is spanned by a long root. Thus any two short compact roots are in the same simple factor of Φ_K , and hence are conjugate via W_K .

Suppose that α is noncompact. Then Φ is of type $B_n, n \geq 3, D_{2k}, k \geq 2, E_7, E_8$, or F_4 , and in the case of $\Phi = B_{2k}$ or F_4 , α is long.

We first consider the case that Φ is of type $B_n, n \geq 3$. Here Φ_K is of type $B_k \times D_{n-k}$, where B_k is spanned by the even indices and D_{n-k} is spanned by the odd indices. Thus W_K contains all permutations of even indices, all permutations of odd indices, all sign changes of even indices, and an even number of sign changes of odd indices. Let s_i denote the sign change $e_i \mapsto -e_i$. Suppose n=2k+1 is odd, and let $\alpha=e_{2k+1}$ be the short simple root. If β is any short noncompact root, then $\beta=\pm e_{2j+1}$, where $0\leq j\leq k$. The permutation that exchanges e_{2k+1} and e_{2j+1} is in W_K . Further, since $n\geq 3$, there is $0\leq i\neq j\leq k$, and the product of the sign changes $s_{2i+1}s_{2j+1}\in W_K$. Thus in any case we can find $v\in W_K$ with $ve_{2k+1}=\pm e_{2j+1}$.

If α is a long simple root, then $\alpha = e_i - e_{i+1}$ and $\beta = \pm e_j \pm e_k$, where, since β is noncompact, we can assume without loss of generality that $j \equiv i \mod 2$ and $k \equiv i+1 \mod 2$. Using W_K we can permute the pairs (i,j) and (i+1,k). As above, there is an element of W_K which changes the sign of the term with the odd index. But W_K also contains all sign changes corresponding to even indices. Thus we can find $v \in W_K$ with $v(e_i - e_{i+1}) = \pm e_j \pm e_k$.

The final case is when Φ is of type D_{2k} , $k \geq 2$, E_7 , E_8 , or F_4 , and in the case of $\Phi = F_4$, α is long. Let β be any noncompact root in Φ of the same length as α . We will show that when Φ is of type E_7 , E_8 , or F_4 , there is a root system $\Phi_1 \subset \Phi$ which contains both α and β , is of type D_{2p} , $p \geq 2$,, and is spanned by

strongly orthogonal noncompact roots. Thus it will suffice to prove the result when $\Phi = D_{2p}, p \geq 2$. Then $\Phi_K = D_p \times D_p$, where one D_p factor is spanned by the even indices and the other is spanned by the odd indices. In this case $\alpha = e_i \pm e_{i+1}$ for some $1 \leq i \leq 2p-1$, and $\beta = \pm e_j \pm e_k$ where $j \equiv i \mod 2$ and $k \equiv i+1 \mod 2$. Using W_K we can permute the pairs (i,j) and (i+1,k). We can also change the signs of e_j and e_k as above, since there are at least two even indices and at least two odd indices.

It remains to produce the root system Φ_1 . If Φ is of type F_4 , then α and β are long, and we can take Φ_1 to be the set of long roots in Φ . Suppose that Φ is of type E_7 or E_8 . Write $\alpha = \gamma_1$ and let $\{\gamma_2, \ldots, \gamma_r\}$ be a set of strongly orthogonal noncompact roots spanning Φ_α . Then $\{\gamma_1, \ldots, \gamma_r\}$ is a set of strongly orthogonal noncompact roots spanning Φ . As in the proof of Lemma 5.2, either $\beta = \pm \gamma_i$ for some i, or $\beta = \frac{1}{2} \sum_{i \in I} \epsilon_i \gamma_i$ where I consists of four indices. In either case, there are at least $r - 5 \geq 2$ of the γ_i 's which are orthogonal to both α and β . For simplicity of notation assume that γ_{r-1}, γ_r are orthogonal to both α and β . When Φ is of type E_7 , let $\Phi_1 = \{\gamma \in \Phi : \langle \gamma, \gamma_r \rangle = 0\}$. When Φ is of type E_8 , let $\Phi_1 = \{\gamma \in \Phi : \langle \gamma, \gamma_i \rangle = 0, i = r - 1, r\}$. In either case Φ_1 is of type D_6 , is spanned by strongly orthogonal noncompact roots, and contains both α and β .

Proof of Lemma 4.11. We need to check Lemma 4.11 for irreducible root systems of type C_n , $n \geq 2$, B_n , $n \geq 3$, and F_4 .

Suppose that Φ is of type $C_n, n \geq 1$. When $\alpha = 2e_n$ is the long simple root, Φ_{α} is of type C_{n-1} and α is a long root in ϕ for all $\phi \in \mathcal{T}(\Phi)$. In this case we always have

$$c(\Phi) = c(\Phi_{\alpha}) = c(\alpha, \phi) = c(\alpha, \Phi) = 1.$$

When $\alpha = e_i - e_{i+1}$ is a short simple root, Φ_{α} is of type $C_{n-2} \times A_1$ and if $\alpha \in \phi$, it must be a short root in an irreducible factor of type C_2 . Thus we have

$$c(\Phi) = c(\Phi_{\alpha}) = 1$$
 and $c(\alpha, \phi) = c(\alpha, \Phi) = 2$.

Suppose that Φ is of type $B_n, n \geq 3$. If $\alpha = e_n$ is the short simple root, then Φ_{α} is of type B_{n-1} . When n = 2k is even, every $\phi \in \mathcal{T}_n(\Phi, \alpha)'$ is of type B_2^k , so that α must be in an irreducible factor of type B_2 of ϕ . In this case we have

$$c(\Phi) = 2^{k-1} = c(\Phi_{\alpha}); \quad c(\alpha, \Phi) = c(\alpha, \phi) = 2.$$

Suppose that n = 2k + 1 is odd. Then $\phi \in \mathcal{T}_n(\Phi, \alpha)'$ is of type $B_2^k \times B_1$ and α is in the irreducible factor of type B_1 of ϕ . In this case we have

$$c(\Phi) = 2^k$$
, $c(\Phi_{\alpha}) = 2^{k-1}$, $c(\alpha, \Phi) = 2$, $c(\alpha, \phi) = 1$.

When $\alpha = e_i - e_{i+1}$ is a long simple root, Φ_{α} is of type $B_{n-2} \times A_1$. Let $\phi \in \mathcal{T}_n(\Phi, \alpha)'$. Then α must be a long root in an irreducible factor of type B_2 . When n = 2k is even we have

$$c(\Phi) = 2^{k-1}, \quad c(\Phi_{\alpha}) = 2^{k-2}, \quad c(\alpha, \phi) = 1, \quad c(\alpha, \Phi) = 2.$$

When n = 2k + 1 is odd we have

$$c(\Phi) = 2^k$$
, $c(\Phi_{\alpha}) = 2^{k-1}$, $c(\alpha, \phi) = 1$, $c(\alpha, \Phi) = 2$.

Suppose that Φ is of type F_4 . If α is a short simple root (compact) and $\phi \in \mathcal{T}_n(\Phi, \alpha)'$, then Φ_{α} is of type B_3 and α is a short root in an irreducible factor of ϕ

of type B_2 , so

$$c(\Phi) = 2 = c(\Phi_{\alpha}); \quad c(\alpha, \Phi) = c(\alpha, \phi) = 2.$$

Suppose that α is a long simple root (noncompact) and $\phi \in \mathcal{T}_n(\Phi, \alpha)'$. Then Φ_{α} is of type C_3 , and since α is a long root in ϕ we have

$$c(\Phi) = 2$$
, $c(\Phi_{\alpha}) = 1$, $c(\alpha, \Phi) = 2$, $c(\alpha, \phi) = 1$.

References

- [G-K-M] M. Goresky, R. Kottwitz, and R. MacPherson, Discrete series characters and the Lefschetz formula for Hecke operators, Duke Math. J. 89 (1997), 477–554. CMP 98:01
- [HC1] Harish-Chandra, Discrete series for semisimple Lie groups I, Acta Math., 113 (1965), 241-318. MR 36:2744
- [HC2] Harish-Chandra, Harmonic analysis on real reductive groups I, J. Funct. Anal., 19 (1975), 104-204. MR 53:3201
- [H1] R. Herb, Characters of averaged discrete series on semisimple real Lie groups, Pac. J. Math., 80 (1979), 169-177. MR 80h:22020
- [H2] R. Herb, Fourier inversion and the Plancherel theorem for semisimple real Lie groups, Amer. J. Math., 104 (1982), 9-58. MR 84e:22013
- [H3] R. Herb, Fourier inversion and the Plancherel theorem, (Proc. Marseille Conf. 1982), Lecture Notes in Math. Vol 880, Springer-Verlag, Berlin and New York, 1981, 197-210. MR 83f:22013
- [H4] R. Herb, Discrete series characters and Fourier inversion on semisimple real Lie groups, TAMS, 277 (1983), 241-261. MR 84h:22032
- [H-W] R. Herb and J.A. Wolf, The Plancherel theorem for general semisimple groups, Compositio Math., 57 (1986), 271-355. MR 87h:22020
- [K] A.W. Knapp, Representation Theory of Semisimple Groups, An Overview Based on Examples, Princeton U. Press, Princeton, N.J., 1986. MR 87j:22022
- [K-Z] A.W. Knapp and G. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. 116 (1982), 389-501; 119 (1984), 639. MR 84h:22034a,b; MR 85e:22023

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742 $E\text{-}mail\ address$: rah@math.umd.edu